

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities [D11]) Page |

 SMART and FLEXible mobile DATA COLLECTOR for

GIS

(Acronym, MOBILO)

ENTERPRISES 0916/0055

[D11] Report in WP5 activities

(Automatic Traffic Sign Recognition)

Deliverable n. D11 Deliverable title Report in WP5 activities

Workpackage WP5 WP title Automatic Traffic Sign

Recognition

Editors Elias Frentzos (GEO), Dimitrios Skarlatos (CUT)

Contributors Elias Frentzos (GEO), Dimitrios Skarlatos (CUT), Lefteris Tournas (CUT),

Petros Katsikadakos (GEO)

Status Final

Distribution Confidential

Issue date 2020-07-31 Creation date 2020-07-01

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 2

Contents

LIST OF FIGURES .. 3

LIST OF ABBREVIATIONS .. 4

REVISION CHART AND HISTORY LOG ... 5

1 Introduction ... 7

2 Traffic sign recognition .. 7

2.1 Introduction ... 7

2.2 Convolutional Neural Networks .. 7

2.2.1 Convolution layers ... 8

2.2.2 Pooling Layer ... 10

2.2.3 Classification .. 10

2.3 Implementation to traffic sign recognition ... 11

3 Collecting Data... 13

3.1 Collecting data with MOBILO Data processing software .. 13

3.2 SharpLabelImage application development and usage .. 15

3.3 SharpLabelImage short description ... 16

3.4 Collecting data with SharpLabelImage .. 17

4 Training with TensorFlow 2.4 .. 18

4.1 Introduction ... 18

4.2 Prerequisites .. 19

4.3 Partition the Dataset ... 19

4.4 Create Label Map .. 20

4.5 Create TensorFlow Records ... 21

4.6 Configuring a Training Job ... 21

4.7 Training the Model .. 22

4.8 Exporting a Trained Model .. 23

5 Results ... 24

6 References ... 25

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 3

LIST OF FIGURES
Figure 1: Convolutional Neural Network ... 8

Figure 2: 3x3 Convolution Kernel .. 9

Figure 3: CNN with 2 convolution layers ... 9

Figure 4: 3x3 Max and average pooling .. 10

Figure 5: Classification ... 11

Figure 6: CNN for traffic sign recognition .. 11

Figure 7: Image samples from a training dataset .. 12

Figure 8: Augmented image samples .. 12

Figure 9: Area covered in one day data collection .. 13

Figure 10: Example screenshot of traffic sign data collection with MOBILO software 14

Figure 11: Example PASCAL VOC attributes .. 15

Figure 12: SharpLabelImage Design area (a) and screenshot area (b) 16

Figure 13: Managing and editing labels .. 17

Figure 14: Training monitoring with TensorBoard .. 23

Figure 15: Traffic sign detection using MOBILO API .. 24

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 4

LIST OF ABBREVIATIONS

API Application Programming Interface

SDK Software Development Kit

GPS/GNSS
Global Positioning System / Global Navigation Satellite

System

INS/IMU inertial navigation system / inertial measurement unit

RTK Real Time Kinematic

CPU Central Processing Unit

GPU Graphics Processing Unit

COCO Common Objects in Context

SSD Single Shot Multi-Box Detector

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 5

REVISION CHART AND HISTORY LOG
REV DATE REASON

0.1 01/07/2020 Initial

0.2 15/07/2020 Draft

0.3 31/07/2020 Final

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 6

Executive Summary

This deliverable describes the results of MOBILO’s project WP5. The specific goal of WP5 was

to develop a traffic sign detection module, to automatically identify traffic signs along

vehicle tracks. To solve the traffic sign recognition task using the deep learning approach, a

convolutional neural network (CNN) was adopted. Due to the lack of huge amount of data

required to train a CNN from scratch, the transfer-learning technique was employed.

Transfer-learning is a popular approach in deep learning where pre-trained models are used

as the starting point on computer vision tasks and fine-tuned to recognize additional classes.

For this purpose, a publicly available object-detection model that was pre-trained on the

Microsoft COCO (Common Objects in Context) dataset is used. The selected model is the

“SSD ResNet50 V1 FPN 640x640” model, freely available by Google. The model was fine-

tuned on a new training dataset generated in the framework of MOBILO, to recognize the 25

most popular traffic sign types in Cyprus. The deep learning library TensorFlow 2.4 was used

for training and testing. The detection effectiveness varies from 30% to 99%, depending on

the scale of the traffic sign, the orientation, the background environment, and the damages,

vandalisms, etc. that often occur. However, the implementation of a reliable traffic sign

detection model requires continuous training with new data acquired over time, under

different environmental conditions. The developed transfer-learning approach for traffic sign

recognition in MOBILO allows the re-training of the object detection model in less than 24

hours, whatever new training data are available.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 7

1 Introduction
Traffic signs are an integral part of the road infrastructure. They provide critical information,

sometimes compelling recommendations, for road users, which in turn requires them to

adjust their driving behavior to make sure they adhere with whatever road regulation

currently enforced. Traffic signs need to be consistently inventoried; their condition needs to

be in a reliable state to allow a trusting use by the drivers.

Traditionally, standard computer vision methods were employed to detect and classify

traffic signs on video images, but these required considerable and time-consuming manual

work to handcraft important features in images. Recent advantages in artificial intelligence

allow the use of deep learning models that reliably classify traffic signs in a fully automatic

way. Such a deep learning architecture has been implemented in the framework of MOBILO,

to automatically identify traffic signs along vehicle tracks.

Artificial Intelligence has been witnessing a monumental growth in bridging the gap between

the capabilities of humans and machines. Researchers and enthusiasts alike, work on

numerous aspects of the field to make amazing things happen. One of many such areas is

the domain of Computer Vision. The agenda for this field is to enable machines to view the

world as humans do, perceive it in a similar manner and even use the knowledge for a

multitude of tasks such as Image & Video recognition, Image Analysis & Classification, Media

Recreation, Recommendation Systems, Natural Language Processing, etc. The advancements

in Computer Vision with Deep Learning have been constructed and perfected with time,

primarily over one particular algorithm — a Convolutional Neural Network.

2 Traffic sign recognition

2.1 Introduction

This section describes our approach for efficiently detecting and recognizing traffic signs in

near real-time, taking into account the various condition, illumination and visibility

challenges through the means of transfer learning. We tackle the traffic sign detection

problem using the state-of-the-art of multi-object detection systems such as the “Single Shot

Multi-Box Detector” (SSD) [1] combined with the ResNet50 V1 feature extractor. For this

purpose, a publicly available object-detection model that was pre-trained on the Microsoft

COCO dataset [2] is used. The selected model is the “SSD ResNet50 V1 FPN 640x640” model,

freely available by the TensorFlow Model Zoo. The model was fine-tuned on a new dataset

generated in the framework of MOBILO, to recognize the 25 most popular traffic sign types

in Cyprus.

In the following, after a short introduction to Convolutional Neural Networks (CNNs), their

implementation to traffic sign recognition is discussed. The generation of a new traffic sign

dataset for Cyprus, as well as the training and evaluation process are also presented.

2.2 Convolutional Neural Networks

A Convolutional Neural Network (ConvNet/CNN) [3] is a Deep Learning algorithm which can

take in an input image, assign importance (learnable weights and biases) to various

aspects/objects in the image and be able to differentiate one from the other. The pre-

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 8

processing required in a ConvNet is much lower as compared to other classification

algorithms. While in primitive methods filters are hand-engineered, with enough training,

ConvNetshave the ability to learn these filters/characteristics.

The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons in

the Human Brain and was inspired by the organization of the Visual Cortex. Individual

neurons respond to stimuli only in a restricted region of the visual field known as the

Receptive Field. A collection of such fields overlaps to cover the entire visual area.

Figure 1: Convolutional Neural Network

A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an

image through the application of relevant filters (Figure 1). The architecture performs a

better fitting to the image dataset due to the reduction in the number of parameters

involved and reusability of weights. In other words, the network can be trained to

understand the sophistication of the image better.

2.2.1 Convolution layers

The input data on a ConvNet are RGB images which have been separated by their three-

color planes — Red, Green, and Blue. However, computationally intensive things would get

once the images reach higher dimensions, say 8K (7680×4320 pixels). The role of the

ConvNet is to reduce the images into a form which is easier to process, without losing

features which are critical for getting a good prediction. This is important when we are to

design an architecture which is not only good at learning features but also is scalable to

massive datasets.

The element involved in carrying out the convolution operation in the first part of a

Convolutional Layer is called the Kernel/Filter, K, represented in yellow in figure 2.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 9

Figure 2: 3x3 Convolution Kernel

The filter moves to the right with a certain Stride Value till it parses the complete image

width. Moving on, it hops down to the beginning (left) of the image with the same Stride

Value and repeats the process until the entire image is traversed. In case of images with

multiple channels (e.g. RGB), the Kernel has the same depth as that of the input image.

Matrix Multiplication is performed between Kernel and image pixel values and all the results

are summed with the bias to give us a squashed one-depth channel Convoluted Feature

Output.

The objective of the Convolution Operation is to extract the high-level features such as

edges, from the input image. ConvNets need not be limited to only one Convolutional Layer.

Conventionally, the first ConvLayer is responsible for capturing the Low-Level features such

as edges, color, gradient orientation, etc. With added layers, the architecture adapts to the

High-Level features as well, giving us a network, which has the wholesome understanding of

images in the dataset, similar to how we would (Figure 3).

Figure 3: CNN with 2 convolution layers

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 10

2.2.2 Pooling Layer

Similar to the Convolutional Layer, the Pooling layer is responsible for reducing the spatial

size of the Convolved Feature. This is to decrease the computational power required to

process the data through dimensionality reduction. Furthermore, it is useful for extracting

dominant features which are rotational and positional invariant, thus maintaining the

process of effectively training of the model.

There are two types of Pooling: Max Pooling and Average Pooling. Max Pooling returns the

maximum value from the portion of the image covered by the Kernel. On the other hand,

Average Pooling returns the average of all the values from the portion of the image covered

by the Kernel (Figure 4). Max Pooling also performs as a Noise Suppressant. It discards the

noisy activations altogether and also performs de-noising along with dimensionality

reduction. On the other hand, Average Pooling simply performs dimensionality reduction as

a noise suppressing mechanism.

Figure 4: 3x3 Max and average pooling

The Convolutional Layer and the Pooling Layer, together form the i-th layer of a

Convolutional Neural Network. Depending on the complexities in the images, the number of

such layers may be increased for capturing low-level details even further, but at the cost of

more computational power.

After going through the above process, we have successfully enabled the model to

understand the features. Moving on, we are going to flatten the final output and feed it to a

regular Neural Network for classification purposes.

2.2.3 Classification

The classification of the input images is accomplished by adding a Fully-Connected layer at

the end of the ConvNet architecture (Figure 5). Fully-Connected layer is a (usually) cheap

way of learning non-linear combinations of the high-level features as represented by the

output of the convolutional layer. The Fully-Connected layer is learning a possibly non-linear

function in that space.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 11

Figure 5: Classification

Now that we have converted our input image into a suitable form for our Multi-Level

Perceptron, we shall flatten the image into a column vector. The flattened output is fed to a

feed-forward neural network and backpropagation applied to every iteration of training.

Over a series of epochs, the model is able to distinguish between dominating and certain

low-level features in images and classify them using the Softmax Classification technique.

Figure 6: CNN for traffic sign recognition

2.3 Implementation to traffic sign recognition

The deep leering model that we implemented in MOBILO is based on the customization of

an existing object detection model to recognize traffic signs on video images. This technique

is known as “transfer learning” and is widely used to re-train a model to recognize classes

not in the original set. The selected model is the “SSD ResNet50 V1 FPN 640x640” model,

freely available by the TensorFlow Model Zoo. The model was fine-tuned on a new dataset

generated in the framework of MOBILO, to recognize the 25 most popular traffic sign types

in Cyprus.

A large amount of training data is necessary in order to train a deep learning model. The

training dataset consists of thousands of images for each traffic sign class, under different

scales, orientations and lighting conditions [4] (Figure 7). Such kind of information is not

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 12

easily collected, but hopefully is available by several Institutes and organizations worldwide

(German Institute for Neuroinformatic, http://benchmark.ini.rub.de).

Figure 7: Image samples from a training dataset

In order to extent the available dataset and improve the accuracy of the classification

results, image enhancement and data augmentation techniques will are employed. As many

of the training images suffer from low contrast (blurry, dark), visibility will be improved

applying OpenCV’s Contrast Limiting Adaptive Histogram Equalization function. Data

augmentation will be used in an attempt to:

 extend dataset and provide additional pictures in different lighting settings and

orientations

 improve model’s ability to become more generic

 improve test and validation accuracy, especially on distorted images

Affine transformations is applied to augment the images (scale, rotation and translation). A

sample of augmented images by affine transformations is shown in Figure 8.

Figure 8: Augmented image samples

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 13

The expected classification accuracy is in the order of 95% or even better. It mainly depends

on the conformity of the available training datasets to local actual conditions. The

implementation of the model is done using Python 3.5 with TensorFlow 2.4.

3 Collecting Data
In order to enhance our deep learning model for traffic sign recognition we proceeded to the

collection of traffic signs throughout Cyprus we the aim of our MMS and other available

sources. Traditionally label tagging in images is performed with LabelImg [5]. LabelImg is a

graphical image annotation tool. It is written in Python and uses Qt for its graphical

interface. Annotations are saved as XML files in PASCAL VOC format, the format used by

ImageNet. Besides, LabelImg it also supports YOLO format. On the other hand, given that

LebelImg supports only image files, without any automation and ability of sample

management, we decided to develop new tools for data gathering. These tools are currently

available in MOBILO data collection software, as well as a standalone application, which will

be presented in the following paragraphs.

We therefore used our MOBILO system, in its current form, and performed data gathering

throughout Cyprus, especially in the area of Limassol. The system was mounted on top of a

vehicle which was navigated in urban and rural areas collecting video and position data. An

example image of the area covered in one data collection date can be found in Figure 9.

Figure 9: Area covered in one day data collection

3.1 Collecting data with MOBILO Data processing software

MOBILO data collection tool was used to identify and tag images on the video frames with

appropriate tags of traffic sign information. All tags where stored as feature data in the

software’s project files; we also developed a tool for exporting such feature data into

PASCAL VOX XML format.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 14

Figure 10: Example screenshot of traffic sign data collection with MOBILO software

PASCAL VOC XML format is an annotation format originally created for the Visual Object

Challenge (VOC) and throughout years has become a common interchange format for object

detection labels. It's well-specified and can be exported from many labeling tools including

CVAT, VoTT, and RectLabel. The attributes used in the XML format are as follows:

 Folder: the folder containing the image

 Filename: the relative name of the physical image contained in the above folder

 Path: the absolute path of the image

 Size: height and width in pixels, the depth indicates the number of channels; 3 for

RGB image and 1 for B/W

 Object:

o Name: contains the name of the object being annotated,

o Pose: specifies the orientation

o Truncated: if object extends beyond the bounding box, 1 if this is true else 0

o Difficult: evaluation difficulty. If object is difficult then 1 else 0.

 BndBox: bounding box is consisted of [xmin-top left, ymin-top left,xmax-bottom

right, ymax-bottom right]

An example PASCAL VOC attributes file can be found in Figure 11.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 15

<annotation>

<folder>image_folder</folder>

<filename>imageName.jpg</filename>

<path>C:\Users\user\image_folder\imageName.jpg</path>

<source>

<database>unknown</database>

</source>

<size>

<width>500</width>

<height>500</height>

<depth>3</depth>

</size>

<segmented>0</segmented>

<object>

<name>ΑΝΩΤΑΤΟΟΡΙΟΤΑΧΥΤΗΤΑΣ 70</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<difficult>0</difficult>

<bndbox>

<xmin>233.6245</xmin>

<ymin>134.2795</ymin>

<xmax>304.5851</xmax>

<ymax>207.4236</ymax>

</bndbox>

</object>

</annotation>

Figure 11: Example PASCAL VOC attributes

User may use MOBILO data processing software [D14] to draw a tag around an object and

assign a tag value. Clicking on a corner of the box containing an object, the cursor will

change into a crosshair which by left clicking and dragging will form a bounding box. By

releasing the left mouse button, the rectangle will be placed on screen and the Labeling

dialog will open for inserting the name of the annotation. To resize a rectangle on screen,

place the cursor at any one of the bounding box borders and after the cursor changes, left

click and draw to resize. All data are stored into the MOBILO’s project folder and can be

exported in PASCAL VOC xml format, together with the respective images.

Finally, we have collected over 3000 samples displayed on 1700 images.

3.2 SharpLabelImage application development and usage

Apart from the images collected by our system we decided to enhance our deep learning

model with images acquired by other sources, such as, Google Maps Street View etc. On the

other hand, label tagging in images performed with LabelImg [5] requires having the actual

image already stored in a location on the computer’s disk. As such, the need for a new tool

that can be used in combination with such images displayed in computer’s screen arises.

Specifically, SharpLabelImage is a graphical image data labeling and annotation tool using

object bounding boxes to tag and identify specific portions of an image. For each image in

the dataset processed by the SharpLabelImage tool, a single XML file is produced and

exported, containing the annotations in the Pascal Visual Object Classes (VOC) format.

The SharpLabelImage [D17] application is an extension of the LabelImg program. While both

programs offer similar functions and annotation tools, SharpLabelImage imports images, not

only as files from the local system as LabelImg does, but is also able to capture sizable

screenshots from computer monitors and transfer them in the application for annotation.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 16

Apart from importing single images, the user can import datasets of PASCAL VOC xml files

and their accompanying images for further manipulation of their objects. These datasets

could have either being produced from SharpLabelImage or from another similar data

labeling program.

The main difference of SharpLabelImage with other alternatives is that it allows capturing

screenshots from computer’s desktop, enabling thus the ability to use images from any

source that is available on computer screen such as, online maps and photos etc. Moreover,

it provides tools for PASCAL VOC xml files mass manipulation, such as renaming annotations,

on all files in selected folders, displaying cropped images by annotation etc. A detailed

software description will be included on deliverable [D17].

3.3 SharpLabelImage short description

SharpLabelImage requires user to define two folders from their local system.

 The captured image folder for storing and loading images and their PASCAL VOC xml,

and,

 the sample image folder for saving sample thumbnails for each annotation taken while

using the program.

These folders can be specified by left clicking the corresponding options from the Design

Area Action.

In order to capture a screen shot, the capture Screen Shot button must be pressed. This will

activate the snipping rectangle area which can be positioned by clicking with the left mouse

button and dragging it to the desired portion of screen. Το resize the captured rectangle is

done by clicking and dragging its borders. User can press the Capture button in order to

transfer the snippet on the Design Area or press the Esc button to cancel the procedure and

close the snipping tool.

(a) (b)

Figure 12: SharpLabelImage Design area (a) and screenshot area (b)

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 17

The Edit Label form offers a detailed report of all the labels used by the program, the

snapshots taken and provides the user with the ability to delete or rename a label from all

images. To open the form left click the Edit option from the Action menu.

The table provides information about the labels found in the PASCAL VOC xml.

 Label: the name of the label in alphabetical order.

 Count: the number of times the label has been used in the annotated images.

 Sample: a sample thumbnail image corresponding to the label.

By left clicking a row of the table a label is selected and the image information where this

label has been used are loaded in the right-hand side Annotation Information table.

Figure 13: Managing and editing labels

To rename a label user may left click the row of the Report table that he wishes to rename

and then left click the Rename Label button. An input text box will open for inserting the

new label name. Because this action will replace the label from all PASCAL VOC xml in which

it is found extra confirmation is required by the user.

The project’s code base is written in C# version 5 and its graphical interface utilizes Windows

Forms compiled in .Net Framework 4.5 and was developed in Visual Studio 2019 IDE. The

project’s code will be ported into GitHub as an Open-Source Project available to download

by everyone.

3.4 Collecting data with SharpLabelImage

Using SharpLabelImage we performed data collection over Google Street View images

displayed on a browser. The data were collected throughout Cyprus, especially in the areas

of Nicosia, Limassol and Pafos. We have collected over 700 images containing over 1500

samples.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 18

4 Training with TensorFlow 2.4

4.1 Introduction

Tensorflow [6] is an open-source library for numerical computation and large-scale machine

learning that ease Google Brain TensorFlow, the process of acquiring data, training models,

serving predictions, and refining future results. Tensorflow bundles together Machine

Learning and Deep Learning models and algorithms, using Python as a convenient front-end

and runs it efficiently in optimized C++.

Tensorflow allows developers to create a graph of computations to perform. Each node in

the graph represents a mathematical operation and each connection represents data.

Hence, instead of dealing with low-details like figuring out proper ways to hitch the output

of one function to the input of another, the developer can focus on the overall logic of the

application.

TensorFlow is at present the most popular software library. There are several real-world

applications of deep learning that makes TensorFlow popular. Being an Open-Source library

for deep learning and machine learning, TensorFlow finds a role to play in text-based

applications, image recognition, voice search, and many more. The image recognition is

covered by a dedicated API, the TensorFlow Object Detection API.

The TensorFlow Object Detection API is an open-source framework built on top of

TensorFlow that makes it easy to construct, train and deploy object detection models. There

are already pre-trained models in their framework which are referred to as Model Zoo. A

collection of pre-trained models trained on various datasets are available to the users for

further customization, such as

 the COCO (Common Objects in Context) dataset,

 the KITTI dataset,

 and the Open Images Dataset.

These various models have different architecture and thus provide different accuracies but

there is a trade-off between speed of execution and the accuracy in placing bounding boxes

around detected objects. Transfer learning techniques can be applied on these pre-trained

models. Transfer Learning is one of the major developments in the case of Deep Learning for

Object Detection [7]. In transfer learning, we take a pre-trained model performing

classification on a dataset and then apply this same model to another set of classification

task by just optimizing some hyperparameters. Transfer Learning has two benefits:

 It requires less time to train the model as it is already trained on a different task

 It can be used for tasks which have smaller dataset as the model is already trained

on a larger dataset and the weights are transferred to the new task

Transfer learning techniques are employed to train an existing object detection model to

recognize traffic sign plates in the framework of MOBILO. From the available pre-trained

models by TensorFlow 2 Detection Model Zoo, the “SSD ResNet50 V1 FPN 640x640” model

was selected, since it provides a relatively good trade-off between performance and speed.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 19

4.2 Prerequisites

Several software tools must be installed to train an object detection model in TensorFlow

2.4 on Windows 10 environment. The required packages are:

 Software package Description

1 Anaconda Python 3.7 Anaconda is not a requirement in order to install

and use TensorFlow but is strongly suggested due

to its intuitive way of managing packages and

setting up new virtual environments for working

with Python.

Optional

2 TensorFlow 2.4 TensorFlow is an end-to-end open-source platform

for machine learning. It has a comprehensive,

flexible ecosystem of tools, libraries and

community resources that lets researchers push

the state-of-the-art in ML and developers easily

build and deploy ML powered applications.

3 CUDA Toolkit v10.1 Although using a GPU to run TensorFlow is not

necessary, the computational gains are substantial.

Therefore, if a compatible CUDA-enabled GPU is

available, it is recommended to install the

appropriate CUDA Toolkit.

Optional

4 CuDNN 7.6.5 The NVIDIA CUDA® Deep Neural Network library

(cuDNN) is a GPU-accelerated library of primitives

for deep neural networks. cuDNN provides highly

tuned implementations for standard routines such

as forward and backward convolution, pooling,

normalization, and activation layers.

Optional

5 TensorFlow Object

Detection API

The TensorFlow Object Detection API is an open

source framework built on top of TensorFlow that

makes it easy to construct, train and deploy object

detection models.

6 Google Protobuf The Tensorflow Object Detection API uses

Protobufs to configure model and training

parameters. Protobuf are Google's language-

neutral, platform-neutral, extensible mechanism

for serializing structured data – think XML, but

smaller, faster, and simpler.

7 COCO API COCO is a large image dataset designed for object

detection, segmentation, person keypoints

detection, stuff segmentation, and caption

generation. COCO API provides Matlab, Python,

and Lua APIs that assists in loading, parsing, and

visualizing the annotations in COCO.

4.3 Partition the Dataset

From the available annotated images, it is a general convention to use only part of them for

training, and the rest is used for evaluation purposes. Typically, the ratio is 9:1, i.e., 90% of

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 20

the images are used for training and the rest 10% is maintained for testing. All training

images, together with their corresponding *.xml files, should be placed inside a folder, for

example “tensorflow/images/train”. Similarly, all testing images, with their *.xml files,

should be placed inside “tensorflow/images/test”. This process can be automatically done

using a script provided by the TensorFlow Object Detection API:

partition_dataset.py [-h] [-i IMAGEDIR] [-o OUTPUTDIR] [-r RATIO] [-x]

optional arguments:

 -h, --help Show help message

 -i IMAGEDIR Path to the folder where the image dataset is stored.

 -o OUTPUTDIR Path to the output folder where the train and test dirs should be

 created. Defaults to the same directory as IMAGEDIR.
 -r RATIO The ratio of the number of test images over the total number of

 images. The default is 0.1.

 -x Set this flag if you want the xml annotation files to be

 processed and copied over.

From the available annotated images, 1027 were finally used. From these annotations, 932

(90%) were used for training and 104 (10%) for testing.

4.4 Create Label Map

TensorFlow requires a label map, which namely maps each of the used labels to an integer

value. This label map is used both by the training and detection processes. The labels (i.e.

the training classes) used in Mobilo are presented in the following table:

Class id Class name Number

of labels

1 Bus stop 38

2 Danger animals 39

3 Danger due to frequent movement of children 38

4 Danger of pedestrian crossing 39

5 Dangerous right turn 44

6 Dangerous two opposite or consecutive (continuous) turns, the

first right

46

7 Deadlock 32

8 It is forbidden to overtake motor vehicles, except for two-wheeled

motorcycles without a basket

50

9 mandatory course bottom right 38

10 Mandatory course bottom right or left 62

11 mandatory course lower left 49

12 Mandatory course on the left 32

13 Parking 37

14 Prioritization 56

15 Reversal is prohibited 60

16 Right turn is prohibited 62

17 Road curves 48

18 Road narrows on both sides 42

19 Speed control 38

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 21

Class id Class name Number

of labels

20 speed limit 30 78

21 speed limit 50 60

22 speed limit 65 59

23 speed limit 80 43

24 Traffic lights 58

25 Traffic lights in front 44

Below is an example of the first classes on the label map used in Mobilo:

item {

 id: 1

 name: 'Bus stop'

}

item {

 id: 2

 name: 'Danger animals'

}

…

4.5 Create TensorFlow Records

When annotations have been generated and split into the desired training and testing

subsets, annotations must be converted into the so called TFRecord format. This can be

accomplished by running a script that iterates through all *.xml files in the

tensorflow/images/train and tensorflow /images/test folders, and generates a *.record file

for each of the two:

generate_tfrecord.py [-h] [-x XML_DIR] [-l LABELS_PATH] [-o OUTPUT_PATH] [-i
IMAGE_DIR] [-c CSV_PATH]

optional arguments:

 -h, --help show help message and exit

 -x XML_DIR Path to the folder where the input .xml files are stored.

 -l LABELS_PATH, Path to the labels (.pbtxt) file.

 -o OUTPUT_PATH, Path of output TFRecord (.record) file.

 -i IMAGE_DIR, Path to the folder where the input image files are stored.

 -c CSV_PATH, Path of output .csv file. If none provided, then no file will be

 written.

4.6 Configuring a Training Job

In order to configure a training job, the latest pre-trained network for the model we wish to

use must be downloaded. This can be done by simply clicking on the name of the desired

model in the table found in TensorFlow Detection Model Zoo:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_

detection_zoo.md

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 22

In case of Mobilo, the “SSD ResNet50 V1 FPN 640x640” model is used. The model is available

in zip format and must be extracted in a separate folder, for example “tensorflow/pre-

trained-models”. The configuration of the training pipeline is accomplished by making some

critical changes to the pipeline.config file. The changes that should be applied are as follows:

Line 1: num_classes: 25 # Set this to the number of different label classes

Line 161: fine_tune_checkpoint: "…" # Path to checkpoint of pre-trained mode

Line 172: label_map_path: "…" # Path to label map file

Line 174: input_path: "…" # Path to training TFRecord file

Line 182: label_map_path: "…" # Path to label map file (the same as Line 172)

Line 186: input_path: "…" # Path to testing TFRecord

Once the above changes have been applied to the pipeline.config file, the network training

can be start.

4.7 Training the Model

The training of the model is completed by running the following python script, provided by

the TensorFlow 2 Object Detection API:

python model_main_tf2.py [--model_dir=…] [--pipeline_config_path=…]

where --model_dir points to the path where the new trained model will be saved and --

pipeline_config_path is set to the path of the pipeline.config file.

The training outputs logs only every 100 steps by default, therefore after a while, a log for

the loss at step 100 should be displayed:

INFO:tensorflow:Step 100 per-step time 1.153s loss=0.761

I0716 05:26:55.879558 1364 model_lib_v2.py:632] Step 100 per-step time 1.153s

loss=0.761

...

Training times can be affected by a number of factors such as:

 The computational power of hardware used (either CPU or GPU): Obviously, the

more powerful your PC is, the faster the training process.

 Whether you the TensorFlow CPU or GPU variant is used: In general, even when

compared to the best CPUs, almost any GPU graphics card will yield much faster

training and detection speeds.

 The complexity of the objects we are trying to detect: In case of traffic sign

detection, the training will be a much more challenging and time-consuming

process, due to the high variability of the shape and size of signs, combined with a

highly dynamic background.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 23

A very nice feature of TensorFlow, is that it allows to continuously monitor and visualize a

number of different training/evaluation metrics, while a model is being trained. The specific

tool that allows us to do all that is Tensorboard. TensorBoard is a web server, which (by

default) listens to port 6006 of the machine. Assuming that everything went well, a typical

TensorBoard screen will be like this:

Figure 14: Training monitoring with TensorBoard

In case of Mobilo, the hardware equipment used include: Intel CoreTM i7-5820k CPU,

NVIDIA GeForece GTX 1080 Ti with 11GB RAM DDR5, 64 GB RAM DDR4. The training time

using this equipment was in the order of 20 hours.

4.8 Exporting a Trained Model

Once a training job is complete, the model should be extracted to a newly trained inference

graph, which will be later used to perform the object detection. This can be done employing

the exporter_main_v2.py python script, available by the TensorFlow Object Detection API.

exporter_main_v2.py [--input_type image_tensor] [--pipeline_config_path “…”]

 [--trained_checkpoint_dir “…”] [--output_directory ”…’]

Where --pipeline_config_path the path to the pipeline.config file, --trained_checkpoint_dir

the folder where the trained model exists and --output_directory the folder where the

exported model will be saved.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 24

5 Results
The evaluation of the results of the traffic sign detection model developed in the framework

of MOBILO is caried out using the AI_Detect function implemented in the MOBILO API [D15].

The function takes as input an image and returns a number of detected classes with

corresponding detection scores, expressed in %. The location of a traffic sign on the image is

expressed by four integer values (upper, left, width, height) forming a rectangle around the

object:

Figure 15: Traffic sign detection using MOBILO API

The detection score varies from 30% to 99%, depending on the size of the object, the

orientation, the background environment, and the artifacts (damages, vandalisms, etc.) that

are frequently observed on traffic signs in Cyprus. Some classes may be lost, although there

are included in the 25 classes on the training dataset. This is because the number of training

images on this classes is limited and should be improved in feature trainings.

As a conclusion, the development of a reliable traffic sign detection module requires

continuous training with new data acquired over time, under different environmental

conditions. The greater number of training data, the better results will be expected. The

developed training configuration allows the update of the training model in 24 hours,

whatever new data are coming.

ENTERPISES – 0916/0055 / WP5 / Report in WP5 activities. (Deliverable [D11]) Page | 25

6 References

[1] W. Liu, D. Anguelov, D. Erhan, C. Szegedy and S. Reed, "SSD: Single shot multibox

detector," Lecture Notes in Computer Science, vol. 9905, pp. 31-37, 2015.

[2] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr and L. Zitnick,

"Microsoft coco: Common objects in context.," in Computer Vision – ECCV 2014 13th

European Conference, Zurich, 2014.

[3] S. Saha, "A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way,"

2018. [Online]. Available: https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53. [Accessed 2021].

[4] A. Shustanova and P. Yakimov, "CNN Design for Real-Time Traffic Sign Recognition,"

Procedia Engineering, vol. 201, pp. 718-725, 2017.

[5] "LabelImg," [Online]. Available: https://github.com/tzutalin/labelImg. [Accessed 07

2020].

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis and J. Dean, "Tensorflow: A system for

large-scale machine learning," Symposium on Operating Systems Design and

Implementation, pp. 265-283, 2016.

[7] TensorFlow, "Training Custom Object Detector," 2021. [Online]. Available:

https://tensorflow-object-detection-api-

tutorial.readthedocs.io/en/latest/training.html#preparing-the-workspace. [Accessed

2021].

