

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

 SMART and FLEXible mobile DATA COLLECTOR for

GIS

(Acronym, MOBILO)

ENTERPRISES 0916/0055

[D14] Report on the development of the

software that is used during the video

collection process

Deliverable n. D14 Deliverable title Report on the development of

the software that is used

during the video collection

process

Workpackage WP6 WP title Route Planning – data

gathering GUI

Editors Elias Frentzos (GEO), Dimitrios Skarlatos (CUT)

Contributors Elias Frentzos (GEO), Dimitrios Skarlatos (CUT), Petros Katsikadakos (GEO),

Kyriakos Toumbas (GEO)

Status Final

Distribution Public

Issue date 2020-07-31 Creation date 2020-07-01

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 2

Contents

LIST OF FIGURES .. 3

LIST OF TABLES .. 4

LIST OF ABBREVIATIONS .. 5

REVISION CHART AND HISTORY LOG ... 6

1 Introduction ... 8

2 General Software Development architecture ... 8

2.1 Specialized APIs that were developed for the MobiloGrabber application. 9

2.2 Existing Components ... 9

2.3 Newly developed Components ... 10

2.4 General design of MobiloGrabber Application and hardware components 10

3 GeonoesisGPS library .. 11

3.1 Library description ... 12

3.2 Namespace NMEA ... 12

3.3 Namespace NTRIP ... 14

3.4 Namespace GeonoesisGPS .. 17

4 VideoGrabber library ... 19

4.1 Library description ... 19

4.2 VideoGrabber Classes .. 19

5 Map Matching and Routing ... 21

5.1 Map Matching Algorithm .. 21

5.2 Routing algorithm performance .. 22

6 MobiloGrabber Application ... 23

6.1 General Description ... 24

6.2 Produced files .. 26

7 Conclusions .. 27

8 References ... 29

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 3

LIST OF FIGURES
Figure 1: Data flow in MobiloGrabber ... 10

Figure 2: Class (UML) Diagram of GeonoesisGPS library ... 11

Figure 3: Class (UML) Diagram of VideoGrabber library ... 18

Figure 4: Synthetic road network. Different edge colours indicate different group of edges 22

Figure 5: Part of a CPP example solution (segments 91 to 213) ... 22

Figure 6: Chinese Postman algorithm execution time vs number of edges in the graph 23

Figure 7: Example screen of MobiloGrabber software during data collection 24

Figure 8: Example screen of MobiloGrabber software during system’s initialization 25

Figure 9: Example data contained in a MOBILO project folder. .. 27

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 4

LIST OF TABLES
Table 1: Overview of Ublox’s F9P NMEA sentences processed by GeonoesisGPS 12

Table 2: Annotation used for classes’ properties and methods. ... 13

Table 3: Properties and Methods of GPGGA Class .. 13

Table 4: Properties and Methods of GPGLL Class ... 13

Table 5: Properties and Methods of GPGGA Class .. 14

Table 6: Properties and Methods of GPGST Class ... 14

Table 7: Properties and Methods of GPGSV Class ... 14

Table 8: Properties and Methods of NTRIPNetwork Class .. 15

Table 9: Properties and Methods of NTRIPCaster Class .. 15

Table 10: Properties and Methods of NTRIPDataStream Class ... 16

Table 11: Properties and Methods of NTRIPclient Class ... 16

Table 12: Properties and Methods of SerialPort Class .. 17

Table 13: Properties and Methods of GPSHandler Class... 18

Table 14: Properties and Methods of VideoGrabberBase Class ... 20

Table 15: Properties and Methods of VideoGrabberHardware Class 20

Table 16: Properties and Methods of VideoGrabberThread Class .. 21

Table 17: Project files containing actual on-site data. .. 27

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 5

LIST OF ABBREVIATIONS

API Application Programming Interface

DLL Dynamic Link Library

SDK Software Development Kit

GPS/GNSS
Global Positioning System / Global Navigation Satellite

System

INS/IMU inertial navigation system / inertial measurement unit

RTK Real Time Kinematic

PPS Pulse Per Second

CPP Chinese Postman Problem

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 6

REVISION CHART AND HISTORY LOG
REV DATE REASON

0.1 01/07/2020 Initial

0.2 15/07/2020 Draft

0.3 31/07/2020 Final

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 7

Executive Summary

This deliverable describes part of the results of MOBILO’s project WP6. This WP primarily

aims at developing a software component that is used by the system’s end user before and

during the data collection process. Specifically, as suggested by the project proposal, the

component should at least provide the following functionality (a) Display a map, (b) Gather

Video Data (c) Gather GPS / INS Data. This software component is very essential to the end

user to assist her during the – demanding in terms of focalization - video collection process:

record and mark the already visited road network parts, while at the same time supervising

the video collection process and adjusting possible interface parameters. The software

developed by this WP can be used to pair with the MOBILO hardware components, such as

GPS RTK data, INS and Cameras. Specifically, the data gathering developed software, utilizes

all components connected to a laptop with windows 10 and a wireless connection to the

internet. The software assures the synchronization between all connected modules, that is,

the GPS-RTK2 board, MTi-7 INS/GNSS and FLIR (machine vision) cameras.

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 8

1 Introduction
This WP primarily aims at developing a software component that is used by the system’s

end user during the data collection process. Specifically, as suggested by the project

proposal, the component provides the following functionality:

 Display a map

 Gather Video Data

 Gather GPS / INS Data

To achieve this functionality the software component should be able to connect to all

MOBILO system’s parts, handle streamed data and store them in the hard disk of the

underlying computer in a synchronized manner. Therefore, the developed software

component should handle both positional and rotational data by the positioning subsystem,

as well as image data streamed by the imaging subsystem.

Moreover, given the current position of the sensors, the software should by capable to

display the system’s current position on a map, as well as all the recorded so far trajectory

of the respective vehicle. The software should also demonstrate the current status of the

imaging subsystem, by displaying several frames of the gathered video data so as to give

the user the ability to check whether all components are satisfactory working. Summarizing,

the following indications are displayed over the UI of our software:

 GPS / GNSS Condition (fix / float / autonomous / timeout)

 MTi-7 connection status (connected / timeout)

 Machine vision Cameras (gathered frames are displayed, e.g., 5 sec)

Regarding the map used in the background, our software can display vector data (polygons,

lines etc.), raster maps, as well online XYZ tile – based maps, such as google maps, Bing

maps, OpenStreetMap etc. As such, the user has the ability to choose among several

backgrounds which are suitable for her needs. The software also supports several

projection systems for the geographically displayed data, including WGS84, UTM, Cyprus’s

LTM etc. On the other hand, all data collected are stored in the application’s data folder in

the underlying system on which data are collected, i.e., WGS84.

Although the final output of this WP is an application with a friendly user interface capable

of supporting the data collection process, we have developed two underlying libraries (APIs)

that support this interface. This option was dictated by the need for code reuse, as well as

the possible universal usages of several components developed during the project’s

execution. For example, GeonoesisGPS library developed under this work package, is used

in our MobiloGrabber application, while it can be used for any GPS / GNSS related

application that exploits u-blox F9P board [1]; in fact, we have already developed a proof-

of-concept application that uses F9P board and GeonoesisGPS library to perform simple

topographic measurements, a by-product of our project.

2 General Software Development architecture
The primary output of this WP is MobiloGrabber application that is used during the video

collection process. While this is desktop application with a user interface, it is based on

several C#, VB and C++ projects that provide several components used throughout all

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 9

developed applications. The components are provided in the form of dynamic link libraries

which can be categorized into three categories:

 APIs developed during MOBILO project’s evolution regarding the project’s core, such

as libraries responsible for communication with GPS / GNSS devices, etc.,

 APIs provided by external vendors and / or open-source components that are used

in our APIs (of the first category) and / or applications.

 APIs developed during MOBILO project’s evolution that can be reused in a variety of

other applications outside of MOBILO project.

In the next sections we further analyze the components used throughout the application

development life cycle.

2.1 Specialized APIs that were developed for the MobiloGrabber application.

Regarding the API developed during MOBILO project that is used by MobiloGrabber

application, these constitutes of the following projects that form dynamic link libraries (dll)

files:

 GeonoesisGPS C# project: GeonoesisGPS provides a library with objects capable of

communicating with GPS / GNSS devices via a virtual com port (usb device),

configure them according to the user needs, receive and parse NMEA sentences to

produce meaningful information, send RTCM corrections to the device provided by a

NTRIP caster and record raw data transmitted by the receiver. The respective project

provides a class library in the form of .NET dynamic link library.

 VideoGrabber C# project: VideoGrabber provides a library with objects capable of

communicating both synchronously and asynchronously with FLIR cameras,

configure them, start exposing and grabbing pictures on a timely manner, whereas

trigger can be provided by both software and hardware sources.

 MobiloBase C# project: This is the main output of WP7; it provides all functionality

used to manage georeferenced video streams constructed by the MobiloGrabber

application. Provides geometry objects and algorithms, spatiotemporal objects

(trajectory), photogrammetry objects and procedures, as well as handling of video

data synchronized with the object’s trajectories. Its usage in the current context is

limited to the usage of spatiotemporal objects in a unified manner with all other

applications.

2.2 Existing Components

There are also several external APIs that are used inside the developed applications. Among

them, the most important are:

 NettopologySuite [2]: A .NET GIS solution that is fast and reliable for the .NET

platform. NetTopologySuite is a direct port of all the functionalities offered by JTS

Topology Suite: NTS expose JTS in a '.NET way', as example using Properties,

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 10

Indexers etc. The JTS Topology Suite is a Java library for creating and manipulating

vector geometry. It also provides a comprehensive set of geometry test cases.

 SharpMap [3]: An easy-to-use mapping library for use in web and desktop

applications that provides access to several vector and raster data sources.

 SpinnakerNET [4]: SpinnakerNET is part of the FLIR API used to communicate with

the cameras of the imaging subsystem, configure them and handle the produced

images. SpinnakerNET is used in .NET applications.

 SpinVideoNET [4]: SpinVideoNET is part of the FLIR API used to create avi (video)

files with .NET applications.

2.3 Newly developed Components

Inside our project we have also included APIs from several external libraries developed by us

during the project’s execution which are isolated from the rest of the project, since they

provide general functionality that can be reused in several applications. These features are

common among several software projects that are developed within the project’s

organizations:

 GeonoesisWinForms: API that provide general functionality for winforms such as

zoomable picture boxes, supporting of drawing objects in picture boxes, forms’

settings retrieval and update, form stylization etc.

 GeonoesisMaps: API that provides general mapping utilities, such as coordinate

system transformations, topology and cleanup operations, grid management,

providers for xyz tiles consumed on all maps displayed on the developed

applications, reading, and writing shapefiles etc. [D13]

2.4 General design of MobiloGrabber Application and hardware components

Implementing the developments of WP3 and WP4 in our context, we have designed the data

flow that is displayed in Figure 1 and is supported by the MobiloGrabber application.

Figure 1: Data flow in MobiloGrabber

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 11

Specifically, MobiloGrabber application connects to the positioning and imaging subsystems

of MOBILO system via USB interfaces. Both GPS / GNSS and INS / IMU boards connect to an

L1 / L2 GPS / GNSS antenna through a signal splitter. GPS / GNSS connects through GPIO

cables to the cameras so as to pass the hardware trigger signal provided by its TP / PPS

interface. Here we must note that a less accurate software trigger can be also used to trigger

the cameras, which is usually used in lab conditions, e.g., to take pictures of a chessboard for

calibration purposes. Finally, MobiloGrabber application synchronizes all hardware

components, connects to an NTRIP caster via the internet to send RTCM corrections to the

GPS / GNSS, and receives and stores in the disk all data provided by them.

Figure 2: Class (UML) Diagram of GeonoesisGPS library

3 GeonoesisGPS library
The GeonoesisGPS library is responsible for communicating with the GPS / GNSS hardware

component, performing the following tasks:

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 12

 Configures the device using the appropriate configuration parameters. This is performed

by sending the appropriate binary data to the virtual com port that is created by the USB

connection and the GPS / GNSS board driver.

 Receives and parses NMEA sentences and raw data transmitted by the receiver. This is

performed by establishing a connection to the same com port and parsing data

transmitted by the receiver, in order to create GPGXX objects according to the NMEA

specification.

 Sends RTCM corrections to the receive so as to achieve cm – level position accuracy by

RTK solutions. This is accomplished by establishing a Berkley socket connection between

the GeonoesisGPS library and NTRIP caster, by providing IP, port, and credentials to

establish the connection.

3.1 Library description

The main class of the GeonoesisGPS library is a GPSHandler object which allows

asynchronous communication with GPS / GNSS component so as to enable user interaction

with other components of the application that consumes the library, e.g., user interface with

windows forms. GPSHandler uses a Serial Port class that allows to read and write messages

to the serial port. It also contains a NMEA namespace which provides classes for each one of

the NMEA sentences transmitted by the GPS / GNSS device and is responsible to decode the

NMEA sentences into a meaningful format. Finally, it provides a NTRIP namespace that

handles connection to the NTRIP caster. The UML diagram of the GeonoesiGPS library can be

found in Figure 2.

3.2 Namespace NMEA

The NMEA sentences that are decoded by our GeonoesisGPS library can be found in

following Table 1. Each sentence corresponds to a class in our library.

NMEA Sentence Sentence contents

$GNGGA Time, position, and fix related data of the receiver.
$GNGLL Position, time and fix status.
$GNGSA Used to represent the ID’s of satellites which are used for position fix.
$GNGST Provides System Fix Data such as solution status, STDevE, N, Z etc.
$GNGSV

Satellite information about elevation, azimuth and CNR, $GNGSV is used
for GPS, Galileo and Beidou satellites

$GNRMC Time, date, position, course and speed data.

 Table 1: Overview of Ublox’s F9P NMEA sentences processed by GeonoesisGPS

In the following we provide class description (properties / methods) for all classes in the

NMEA namespace. Table 2 summarizes the annotation used in the rest of the document for

specifying the type of Property / Method / Events for all following tables.

 Property

 Method

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 13

 Event

Table 2: Annotation used for classes’ properties and methods.

 Class GPGSA: Implements methods for decoding a GNGGA NMEA sentence,

providing the respective information in the form of properties of the object.

Properties and methods implemented are displayed in the following Table 3.

GPGSA

(NMEASentence)
 Constructor method that decodes the provided string and assigns

property values
Mode

 Mode. M=Manual, A=Auto (forced/not forced to operate in 2D or

3D mode)
FixMode

 Enumeration for the GSA Fix mode. Takes values between

FixNotAvailable, 2D Fix and 3D Fix
PRNInSolution

 PRN Numbers used in solution
PDOP

 Point Dilution of Precision
HDOP

 Horizontal Dilution of Precision
VDOP

 Vertical Dilution of Precision

Table 3: Properties and Methods of GPGGA Class

 Class GPGLL: Implements methods for decoding a GNGLL NMEA sentence, which is

responsible for transmitting Geographic position, Latitude and Longitude, providing

the respective information in the form of properties of the object. Properties and

methods implemented are displayed in the following Table 4.

GPGLL

(NMEASentence)
 Constructor method that decodes the provided string and assigns

property values
Position

 Current position
TimeOfSolution

 Time (UTC) Of Position Solution
DataValid

 Data valid (true for valid or false for data invalid).

Table 4: Properties and Methods of GPGLL Class

 Class GPGGA: Implements methods for decoding a GNGGA NMEA sentence, which is

responsible for transmitting Time, position, and fix related data of the receiver,

providing the respective information in the form of properties of the object.

Properties and methods implemented are displayed in the following Table 5.

GPGGA

(NMEASentence)
 Constructor method that decodes the provided string and assigns

property values
TimeOfFix

 Time of Fix (UTC)
Position

 Coordinate of received position
FixQuality

 Enumeration for the Fix Quality. Takes the following values: GPS,

DGPS, Fix, Float, Estimated, Invalid
NoOfSats

 Number of satellites being tracked.
Altitude

 Altitude above sea level
AltitudeUnits

 Altitude Units - M (meters).
Dilution

 Horizontal dilution of position (HDOP).

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 14

HeightOfGeoid
 Height of geoid (mean sea level) above WGS84 ellipsoid.

Table 5: Properties and Methods of GPGGA Class

 Class GPGST: Implements methods for decoding a GNGST NMEA sentence, which is

responsible for transmitting System Fix Data such as solution status, STDevE, N, Z

etc., providing the respective information in the form of properties of the object.

Properties and methods implemented are displayed in the following Table 6.

GPGST

(NMEASentence)
 Constructor method that decodes the provided string and assigns

property values
TimeOfFix

 Time of Fix (UTC)
StDevE

 Standard Deviation Easting
StDevN

 Standard Deviation Northing
StDevEl

 Standard Deviation Elevation
NMEAsentence

 The NMEA sentence before decoding it

Table 6: Properties and Methods of GPGST Class

 Class GPGSV: Implements methods for decoding a GNGST NMEA sentence, which is

responsible for transmitting System Initializes NMEA "Satellites in view", providing

the respective information in the form of properties of the object. Properties and

methods implemented are displayed in the following Table 7.

GPGST()
 Constructor that creates a new list of satellite

SatsInView
 Number of satellites in view

Satellites
 List of satellites. Satellite is a nested class containing satellite

info:

PRN Pseudo-random number ID

Elevation above horizon (degrees)

Azimuth (degrees)

Signal-to-noise ratio in dBHZ (0-99)
GetSatelliteByPRN

 Returns a satellite by its PRN
AddSentence

(NMEAsentence)
 Adds a GPGSV sentence and parses it.

Table 7: Properties and Methods of GPGSV Class

3.3 Namespace NTRIP

The Namespace NTRIP is provides classes for establishing connection to a NTRIP caster that

sends RTCM corrections to the GPS / GNSS receiver. In the following we provide class

description (properties / methods) for all classes in the NTRIP namespace.

 Class NTRIPNetwork: Implements the network that provides the data streams to be

consumed by the NTRIP client. Properties and methods implemented are displayed

in the following Table 8.

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 15

ParseFromString

(line)
 Static constructor method that creates a new NTRIPNetwork

from a SOURCETABLE string provided by a NTRIP server
Identifier

 Network identifier, e.g., name of a network of GNSS

permanent reference stations
Operator

 Name of institution / agency / company operating the

network
Authentication

 Type of Authentication required. None, Basic, Digest
Fee

 Specifies whether a user fee is required for receiving data

streams from this network
WebAddress

 Web-address for network information
WebStream

 Web-address for stream information
WebRegistration

 Web address or mail address for registration

Table 8: Properties and Methods of NTRIPNetwork Class

 Class NTRIPCaster: Implements the NTRIP Caster that provides the data streams to

be consumed by the NTRIP client. The NtripCaster is basically an HTTP server

supporting a subset of HTTP request/response messages and adjusted to low

bandwidth streaming data (from 50 up to 500 Bytes/sec per stream). Properties and

methods implemented are displayed in the following Table 9.

ParseFromString

(line)
 Static constructor method that creates a new NTRIPCaster

from a SOURCETABLE string provided by a NTRIP server
Host

 Caster Internet host domain name or IP address
Identifier

 Caster identifier, e.g. name of provider
Operator

 Name of institution / agency / company operating the

network
NMEA

 Capability of Caster to receive NMEA message with

approximate position from Client
Country

 Three-character country code in ISO 3166
Latitude

 Caster’s position, latitude (north)
Longitude

 Caster’s position, longitude (east)
FallbackHost

 Fallback Caster IP address

Table 9: Properties and Methods of NTRIPCaster Class

 Class NTRIPDataStream: Implements the Data Streams that the NTRIP Server

provides. Properties and methods implemented are displayed in the following Table

10.

ParseFromString

(line)
 Static constructor method that creates a new NTRIPNetwork

from a string provided by a NTRIP caster
MountPoint

 Caster mountpoint
Identifier

 Source identifier, e.g. name of city next to source location
Format

 Data format RTCM, RAW, etc.
FormatDetails

 e.g., RTCM message types or RAW data format etc., update

rates in parenthesis in seconds
Carrier

 Data stream contains carrier phase information

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 16

0 = No , 1 = Yes, L1 , 2 = Yes, L1 & L2
NavSystem

 Navigation system(s)
NetWork

 Network
Country

 Three character country code in ISO 3166
Latitude

 Position, latitude, north
Longitude

 Position, longitude, east
NMEA

 Necessity for Client to send NMEA message with approximate

position to Caster (Boolean)
Solution

 Stream generated from single reference station or from

networked reference stations (0=single base, 1 = network

solution)
Generator

 Hardware - or software generating data stream
Compression

 Compression algorithm (string)
Authentication

 Access protection for this data stream, None, Basic, Digest
Fee

 User fee required for receiving this data stream
BitRate

 Bitrate of data stream, bits per second
Miscellanous

 Miscellaneous information

Table 10: Properties and Methods of NTRIPDataStream Class

 Class SourceTable: It contains the collection of DataStreams, NTRIPCasters and

NTRIPNetworks provided by the NTRIP server.

 Class NTRIPclient: Provides the full functionality for accessing a NTRIP service.

Properties and methods implemented are displayed in the following Table 11

Name
 The NTRIP profile name

UserName
 The NTRIP server Username

Password
 The NTRIP server password

IP
 The NTRIP server IP to connect to

Port
 The NTRIP server port to connect to

MountPoint
 The default MountPoint from which to request data stream

GPS
 The GPSHandler object on which the NTRIPClient will send to

RTCM corrections transmitted by NTRIP Server
NTRIPClient

 Creates a new NTRIPClient object based on the provided values
GetSourceTable

 Gets the SourceTable information provided by NTRIP Server, in

the form of an object
StartNTRIP

(MountPoiunt,

GPGGA)

 Opens the connection to the NTRIP server and starts receiving

data

StopNTRIP
 Stops receiving data from the NTRIP server

Table 11: Properties and Methods of NTRIPclient Class

To use the above object classes, one has to create a new GPSHandler object that is

responsible for connecting to the GPS / GNSS board, create a new NTRIPClient with the

appropriate information (IP, port, credentials etc.), and all objects undertake their role to

provide RTK solutions.

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 17

3.4 Namespace GeonoesisGPS

Namespace GeonoesisGPS contains two main classes which are responsible for the

communication with GPS / GNSS device via com ports, i.e., the GPSHandler and the Serial

Port class. Both operate in an asynchronous way; moreover, GPSHandler provides a way for

asynchronous communication with a parent user interface (such as control, Windows Form,

etc.) to be able to display results and statuses provided by the respective boards. In the

following we provide class description (properties / methods) for both classes:

 Class SerialPort: Implements the network that provides the data streams to be

consumed by the NTRIP client. Properties and methods implemented are displayed

in the following Table 12.

SerialPort

(SerialPort,

BaudRate)

 Initializes the serial port with values specified in argument

BaudRate
 The com port’s Baud rate

IsPortOpen
 Boolean value indicating if port is opened

LogFile
 The file name of where to write raw data received on port

Port
 The name of the com port

TimeOut
 The port’s timeout in seconds

Open
 Opens the GPS port and starts parsing data

Start
 Opens the serial port and starts parsing NMEA data. Returns

when the port is closed.
Stop

 Closes the port and ends the thread.
Write

 Writes data to serial port. This is useful for sending RTCM

data to the device.
WriteLog

 Writes com log data
NewGPSData

 Event that is fired where new data are available. Event is

consumed by GPSHandler class.

Table 12: Properties and Methods of SerialPort Class

 Class GPSHandler: Implements the network that provides the data streams to be

consumed by the NTRIP client. Properties and methods implemented are displayed

in the following Table 12.

GPSHandler

(control)
 Initializes the GPSHandler with a parent control in argument which

consumes the GPS data.
GPSFreq

 Enumeration of the frequency on which GPS transmits data on the

GPSHandler and the hardware trigger (PPS). Takes values of 1 and 2

Hz.
HasGPSFix

 The file name of where to write raw data received on port
IsPortOpen

 Boolean value indicating if port is opened
LogFile

 The file name of where to write raw data received on port
TimeOut

 The port’s timeout in seconds
Configure

 Configures the GPS / GNSS board according to the default

configuration and the GPSFreq value

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 18

Start
 Opens the serial port and starts parsing NMEA data. Returns when

the port is closed.
Stop

 Closes the port and ends the thread.
WriteToGPS

 Writes data to the GPS device. For instance, RTCM data for

Differential GPS.
NewGPSData

 Event that is fired when new data are available. The event broadcasts

GPRMS, GPGGA, GPGSA, GPRMC, GPGSV, GPGST objects.

Table 13: Properties and Methods of GPSHandler Class

Figure 3: Class (UML) Diagram of VideoGrabber library

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 19

4 VideoGrabber library
VideoGrabber library is written in C# consuming methods provided by FLIR’s API regarding

our imaging subsystem, i.e., SpinnakerNET responsible for communicating and configuring

the cameras, and SpinVideoNET, responsible for writing avi video files. Files created by

VideoGrabber classes use the MJPG format, that is, without MPEG compression, allowing us

save high quality image data.

4.1 Library description

Library provides mainly a Video Grabber object that is responsible for connecting to our

imaging subsystem, writing video files, and allowing to communicate asynchronously with a

parent user interface object, such as a windows Form. This is achieved via multithreaded

programming so as to be able to display results and statuses provided by the imaging

subsystem without interrupting user experience in the user interface.

4.2 VideoGrabber Classes

The following classes are available by the VideoGrabber library. The respetive UML diagram

is illustrated in Figure 3

 Class VideoGrabberBase: This is an abstract class that implements most properties

and methods used in the image grabber. Implementations of this abstract class are

the VideoGrabberSoftware and VideoGrabberHardware which specifically

implement video grabber classes with software and hardware triggers, respectively.

Properties and methods implemented in the VideoGrabberBase class are displayed

in the following Table 14.

CreateVideo
 Initializes a new avi file to be filled with video data

GetPictures

(writeVideo)
 Gets pictures and writes them to the video files if indicated by

writeVideo argument
InitializeCameras

 Connects to the cameras. Returns true id successfully

connected
StartGrabbing

 Starts grabbing images appending them to video file.

If it is already writing video it does nothing
StartPreview

 Starts grabbing images without appending them to video file
StopGrabbing

 Stops grabbing images
DesiredInterval

 The desired interval between grabbed images. This is only the

desired interval and not the actual interval that images are

collected, due to possible inability of the underlying hardware

to service the request. This property is meaningful only where

trigger is set to Software.
Folder

 The folder on which the video file will be created
IsDisposed

 A Boolean value indicating whether object is disposed
IsInitialized

 A Boolean value indicating whether cameras are initialized
IsPaused

 A Boolean value indicating whether grabbed images are

currently being append to the video file

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 20

Prefix
 The prefix of the name of the video (avi) files created

TriggerSource
 Enumerator indicating the source of the camera trigger.

Possible values are Software, Hardware
GrabbingStatus

 Enumerator indicating the source of the camera trigger.

Possible values are Software, Hardware
GrabedImage

 Event that is fired when a new image has been collected by

the hardware

Table 14: Properties and Methods of VideoGrabberBase Class

 Class VideoGrabberSoftware: Implements a video grabber object with a software

trigger (computer controls image triggering)

 Class VideoGrabberHardware: Implements a video grabber object with a hardware

trigger provided by the GPS / GNSS board through GPIO cables. Properties and

methods implemented additionally to the ones inherited by VideoGrabberBase, are

displayed in the following Table 15.

VideoGraberHardware
 Creates a new object with hardware trigger

RecordingPeriod
 The temporal period that the grabber operates recording

images in the avi files
TimeDif

 The time difference between GPS time and time of host

computer

Table 15: Properties and Methods of VideoGrabberHardware Class

 Class GrabedTRefImages: Class that is used to pass stereo images grabbed by our

stereo rig, i.e., Left and Right bitmaps, along with the time the collection happened.

 Class VideoGrabberThread: Implements a thread that asynchronously grabs images

through a Software of Hardware Video Grabber object. Class is used to offer a

seamless user experience, allowing to update user interface components through

multithreading. Properties and methods implemented are displayed in the following

Table 16.

VideoGraberThread

(control, trigger)
 Creates a new video grabber thread object with the

trigger specified in argument
VideoGraber

 The underlying VideoGrabberBase (software or hardware

object)
GrabingStatus

 The temporal period that the grabber operates recording

images in the avi files
TimeDif

 The time difference between GPS time and time of host

computer
IsPaused

 A Boolean value indicating whether grabbed images are

currently being append to the video file
GetPictures

 Returns the next pictures that are grabbed by the

hardware in the form of a GrabedTRefImages object
SetTimeDiff

 Method that sets the TimeDif value. Usually, the

maximum difference between GPS and Host time during

the last, e.g., 100 events.

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 21

StartPreview
 Starts cameras, firing GrabedImage events, without

actually writing a video avi file
StartVideo

 Starts cameras, firing GrabedImage events, writing a video

avi file
Stop

 Stops cameras and releases all resources
CammeraConnected

 Event that is fired when cameras are successfully

connected to the process and have starts image grabbing
GrabedImage

 Event that is fired when a new image has been collected

by the hardware

Table 16: Properties and Methods of VideoGrabberThread Class

5 Map Matching and Routing

5.1 Map Matching Algorithm

Map matching is the problem of how to match recorded geographic coordinates to a logical

model of the real world, typically using some form of Geographic Information System. The

most common approach is to take recorded, serial location points (e.g., from GPS) and

relate them to edges in an existing street graph (network), usually in a sorted list

representing the travel of a user or vehicle. Routing quality and performance.

In our case the Map Matching Algorithm should be used in order to determine the network

road segments (graph edges) that have already been visited. A naïve approach in map

matching would be to simply determine the edge that is closer to each sampled GPS point;

however, this approach would result in extremely unreasonable paths involving strange U-

turns, inefficient looping, and overall bizarre driving behavior.

The key problem thus in map matching is the tradeoff between the roads suggested by the

location data and the feasibility of the path. To avoid unreasonable paths, we can introduce

knowledge of the connectivity of the road network to help pull the solution away from

clearly bizarre behavior [5]. In [6] a novel, principled map matching algorithm is described

that uses a Hidden Markov Model (HMM) to find the most likely road route represented by

a time-stamped sequence of latitude/longitude pairs. The HMM elegantly accounts for

measurement noise and the layout of the road network.

The HMM models processes over a path through many possible states, where some state

transitions are more likely than others and where the state measurements are uncertain. In

the algorithm of [6], the states of the HMM are the individual road segments, and the state

measurements are the noisy vehicle location measurements. The goal is to match each

location measurement with the proper road segment. This state representation naturally

fits the HMM, because transitions between road segments are governed by the connectivity

of the road network.

The algorithm of [6], is implemented in barefoot project developed in Java [7], an open-

source Java library for online and offline map matching. Barefoot is ported from Java to

.NET via [8] which is used as basis for our implementation.

Specifically, we have used [8] and adjusted it into our context using the classes presented in

[D12] and [D13] (vertices derived from Geoapi.Coordinate and Edges connecting two

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 22

vertices. We have tested the performance of the implementation and we have established

that it performs properly on the kind of GPS data collected by our system.

5.2 Routing algorithm performance

Given that the routing algorithm of [D12] should be run in a real time environment we run a

series of experiments in order to check its performance and confirm its ability to be run

under such circumstances. We used several synthetic road network data constituted by of

70, 170, 307, 604 and 882 road segments, representing edges of the respective graph (Figure

4). Figure 5 displays a part of the solution for the network of 170 edges (green and yellow

edges of Figure 4).

Figure 4: Synthetic road network. Different edge colours indicate different group of edges

We run the experiments on a i7-4510U @ 2GHz notebook and we acquired the results

illustrated in Figure 6 regarding the algorithm’s execution time.

Figure 5: Part of a CPP example solution (segments 91 to 213)

It is clear that the performance of the algorithm downgrades as the number of network

edges increases. For a network of e.g., 800 road segments, we have an execution time

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 23

greater than 40 seconds. Moreover, we have experimentally established that in a day’s

work MOBILO system could gather data from approximately 160 km of road data. Given a

mean segment length of 100 m (between consecutive road junctions in an urban area), a

typical network to be covered in one day’s work, should contain about 1600 segments.

Therefore, the algorithm’s execution time in such conditions would exceed one minute

making it clearly unable to support real-time environments.

edges millisec

72 721

174 2111

307 6069

604 28635

882 43837

Figure 6: Chinese Postman algorithm execution time vs number of edges in the graph

Moreover, during data collection the vehicle would not always follow the directions given

by the algorithm, causing the algorithm to be continuously run after each root modification.

What is more, given that all the tasks that are needed to be performed by the data

collection software, e.g., manage GPS / GNSS, INS, receiver images from cameras, saving to

disk etc., it would be a mistake to charge CPU with such a demanding task.

6 MobiloGrabber Application
MobiloGrabber application is the main output of WP6. It is a windows application used to

collect data in the field, controls all components connected to a laptop with windows 10

and a wireless connection to the internet. MobiloGrabber software assures the

synchronization between all connected modules, that is, the F9P board (integrated into

GPS-RTK2), MTi-7 INS/GNSS and FLIR (machine vision) cameras. For this purpose, it

consumes the GeonoesisGPS and VideoGrabber libraries presented in the previous sections

and utilizes their asynchronous capabilities in order to provide a user-friendly interface. An

example screenshot of MobiloGrabber application during in-road data collection can be

found in the following Figure 8.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000

m
il

li
se

co
n

d
s

edges

CPP Execution TIme

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 24

Figure 7: Example screen of MobiloGrabber software during data collection

Additionally, MobiloGrabber application also consumes XSens’s API in the form of XDA

classes provided as source code that must be integrated into the application’s source code;

the respective API provides classes that can be used to access (connect, configure, read

from) the MTi-7 application board.

6.1 General Description

Given the data provided by the connected sensors of the positioning subsystem (current

position and heading), MobiloGrabber is capable to display the system’s current position on

a map, as well as all the recorded so far trajectory of the respective vehicle. The software

also displays several frames of the gathered video data so as to give the user the ability to

check whether all components are working well. Summarizing, the following indications are

displayed over the UI of our software

 GPS Condition (fix / float / autonomous / timeout)

 MTi-7 connection status (connected / timeout)

 Machine vision Cameras (gathered frames are displayed every, e.g., 5 sec)

Regarding the maps used in the background we have exploited the developments of [D13].

MobiloGrabber is capable of displaying raster maps, as well online XYZ tile – based maps,

such as google maps, Bing maps, OpenStreetMap etc. It also supports raster and vector data

sources that can be found in the local computer. As such, the user has the ability to choose

among several backgrounds which are suitable for her needs. The software also supports

several projection systems for the geographically displayed data, including WGS84, UTM,

Cyprus’s LTM etc. On the other hand, all data collected are stored in the application’s data

folder in the underlying system on which data are collected, i.e., WGS84.

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 25

Figure 8: Example screen of MobiloGrabber software during system’s initialization

All data acquisitions are performed in an asynchronous manner, where the main UI

component is regularly refreshed, while the user experiences no delays in the tasks

requested, i.e., zooming – panning the map etc. An example screen of the UI that assist the

video collection process is displayed in the following Figure 7.

MobiloGrabber application provides the following capabilities to the end – user:

 Connect to the INS device and display its status / measures taken

 Connect to the GPS / GNSS receiver through com port. Configure GPS / GNSS

receiver during connection.

 Allow to change the com port on which to scan for the device

 Connect to NTRIP servers and broadcast RTCM corrections to the GPS / GNSS

receiver. Manage profiles of multiple NTRIP servers to be used.

 Connect to the imaging subsystem. Select software or hardware trigger for the

cameras. Software trigger is used in e.g., lab conditions where no connection to the

GPS / GNSS system is possible.

 Initialize MOBILO system by storing initial GPS positions in several epochs (Figure 8)

 Select folder on which video / trajectory data are stored

 Add backgrounds in the form of XYZ tiles, raster and vector maps

 Display current and previous trajectories over the selected base map

 Display current vehicle’s position and heading over the selected base map

 Display currently taken images by the imaging subsystem

 Control storing parameters: minimum distance between images

When using network data (shapefiles), the software is capable of map-matching the current

trajectory over them so as to mark already visited road segments and help the user to

decide over his / hers next trajectory, i.e., where to move next. As already stated, on-line

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 26

running of the algorithm that fully covers the network is prohibited by current status of

existing hardware due to performance issues.

We have tested the performance of the developed software on several configurations.

Among the three collecting processes obviously the most demanding in terms of CPU

utilization, RAM and storage utilization, is the process that captures imagery data in the

form of Video files. We have currently established that a rather old i7-4510U @ 2GHz

notebook, with at least three USB built in interfaces, is capable of serving the developed

app and work seamlessly during a data collection procedure of several hours.

6.2 Produced files

MobiloGrabber produces projects in the form of folders on which all recorded files are

stored. Files names are structured by their starting time which serves as an identifier. Their

exact structure is presented in Table 17. Regarding the notation used, [DateInfo] denotes a

string in the form of YYYY-MM-dd_HH-mm-ss, e.g., 2021–03–31_09-30-00, while [NNNN]

denotes a serial number starting spanning from 0 to 9999, i.e., 0000, 0001, 0002 etc. Each

folder should contain files collected at several time periods, as long as the system setup has

not been changed. For example, data collected in the period of one day, regardless of any

stops happened, should be stored in one folder, as long as MOBILO’s carrier and GPS

position has not been changed. The [NNNN] part of the files is used since video files with

size greater 2GB are split across several files.

The following Table 17 contains a description about all files gathered during a MOBILO

collection process. MOBILO’s project may contain data from several such collections.

Therefore, a project folder may contain several file groups that comply with the description

of Table 17; an example of these data groups is illustrated in Figure 9 displaying the contents

of a MOBILO project that is composed by two separate collection processes, i.e., collection

process that started at 2020-07-26 11:54:43, and collection process that started at 2020-07-

26 11:55:36.

Filename Description

[DateInfo].txt Contains date/time information regarding the video that was started

at the [DateInfo] timestamp.

[DateInfo]-L-[NNNN].avi The n’th video file of the left camera that was started at the

[DateInfo] timestamp. It should be noted that FLIR’s API that is used

to produce avi files divides collected video files up to a size of 2GB.

For example, in the case where a video collection procedure lasts

several hours without stopping it, thus producing avi files up to 10

GB, 5 files will be produced denoted with the name [DateInfo]-L-

0000.avi, [DateInfo]-L-0001, …., [DateInfo]-L-0005.

[DateInfo]-R-[NNNN].avi Same as previous regarding the right camera.

[DateInfo]-gps.trj Contains trajectory information obtained by GPS/GNSS regarding the

data collection process that was started at timestamp denoted by

[DateInfo]. Specifically, it contains GPS/GNSS position measurements

obtained by Ublox F9P, along with datetime, fix status and achieved

precisions. Data are logged in WGS84.

[DateInfo]-gps.ubx Contains raw data collected by GPS/GNSS F9P regarding the data

collection process that was started at timestamp denoted by

[DateInfo].

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 27

Filename Description

[DateInfo]-ins.txt Contains trajectory information obtained by INS/IMU regarding the

data collection process that was started at timestamp denoted by

[DateInfo]. Specifically, it contains measurements obtained by MTi-7.

Data are logged in WGS84.

 [DateInfo]-

cmdGetPosition1.txt

Contains measurement information about the initial position

obtained by our GPS / GNSS in MOBILO’s system position 1

[DateInfo]-

cmdGetPosition2.txt

Contains measurement information about the initial position

obtained by our GPS / GNSS in MOBILO’s system position 2

[DateInfo]-

cmdGetDetachedPosition.txt

Contains measurement information about the initial position

obtained by our GPS / GNSS in MOBILO’s system position 1

Table 17: Project files containing actual on-site data.

Figure 9: Example data contained in a MOBILO project folder.

7 Conclusions
This deliverable describes part of the results of MOBILO’s project WP6 which primarily aims

at developing a software component that is used by the system’s end user before and

during the data collection process. Specifically, as suggested by the project proposal, the

component should at least provide the following functionality (a) Display a map, (b) Gather

Video Data (c) Gather GPS / INS Data. This software component is very essential to the end

user to assist her during the – demanding in terms of focalization - video collection process:

record and mark the already visited road network parts, while at the same time supervising

the video collection process and adjusting possible interface parameters. The software

developed by this WP can be used to pair with the MOBILO hardware components, such as

GPS RTK data, INS and Cameras. Specifically, the data gathering developed software, utilizes

all components connected to a laptop with windows 10 and a wireless connection to the

internet. The software assures the synchronization between all connected modules, that is,

the GPS-RTK2 board, MTi-7 INS/GNSS and FLIR (machine vision) cameras.

Regarding the demonstrated inability to on-line process the Chinese Postman Algorithm

due to performance issues, a possible future solution would be to implement a server-side

service that could process the demanding algorithm without the limitations posed by the

on-site hardware usage.

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 28

During this WP we have developed two underlying libraries (APIs) that support this

interface. This option was dictated by the need for code reuse, as well as the possible

universal usages of several components developed during the project’s execution. For

example, GeonoesisGPS library developed under this work package, is used in our

MobiloGrabber application, while it can be used for any GPS / GNSS related application that

exploits u-blox F9P board [1]; in fact, we have already developed a proof-of-concept

application that uses F9P board and GeonoesisGPS library to perform simple topographic

measurements, a by-product of our project.

ENTERPISES – 0916/0055 / WP6 / Report on the development of the software that is used during the video

collection process (Deliverable [D14])

Page | 29

8 References

[1] Ublox, "ZED-F9P," UBlox, [Online]. Available: https://www.u-blox.com/en/product/zed-

f9p-module.

[2] "NetTopologySuite," [Online]. Available: https://nettopologysuite.github.io/. [Accessed

30 9 2020].

[3] "SharpMap," [Online]. Available: https://github.com/SharpMap. [Accessed 20 9 2020].

[4] "SpinView," [Online]. Available: http://softwareservices.ptgrey.com/Spinnaker/

latest/page4.html. [Accessed 31 03 2019].

[5] S. Brakatsoulas, D. Pfoser, R. Salas and C. Wenk, "On Map-Matching Vehicle Tracking

Data," in VLDB, Trondheim, 2005.

[6] P. Newson and J. Krumm, "Hidden Markov Map Matching Through Noise and

Sparseness," in ACM GIS, Seattle, 2009.

[7] "Github/bmwcarit/barefoot," [Online]. Available:

https://github.com/bmwcarit/barefoot.

[8] "Sandwych.MapMatchingKit," [Online]. Available:

https://www.nuget.org/packages/Sandwych.MapMatchingKit/.

