

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20])

SMART and FLEXible mobile DATA COLLECTOR for

GIS

(Acronym, MOBILO)

ENTERPRISES 0916/0055

[D20] Report on Prototype’s Architecture

Deliverable n. D20 Deliverable title Report on prototype’s

architecture

Workpackage WP8 WP title System integration & testing

Editors Elias Frentzos (GEO), Dimitrios Skarlatos (CUT)

Contributors Elias Frentzos(GEO), Dimitrios Skarlatos (CUT), Maria Aristodimou (PWD),

Petros Katsikadakos (GEO), Marinos Vlachos (CUT)

Status Final

Distribution Public

Issue date 2021-03-31 Creation date 2021-03-01

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 2

Contents

LIST OF FIGURES .. 4

LIST OF TABLES .. 5

LIST OF ABBREVIATIONS .. 6

REVISION CHART AND HISTORY LOG ... 7

1 Introduction ... 9

2 MOBILO Prototype .. 10

2.1 Prototype System Architecture ... 12

2.2 Prototype design ... 14

2.3 Limitations ... 15

2.4 Low-cost System .. 16

3 Source Code Management .. 16

3.1 Version Control Software (VCS) ... 17

3.1.1 VCS basic functions .. 17

3.2 Basic version control procedures .. 18

3.2.1 Example based on a typical scenario. .. 19

3.3 Types of Version Control ... 19

3.3.1 Centralized Version Control System (CVCS) .. 19

3.3.2 Distributed Version Control Systems (DVCS)... 20

3.4 Git Branching Models .. 21

3.5 GitFlow Workflow Description .. 22

3.5.1 GitFlow Branches ... 22

4 Integration Results – system’s accuracy .. 23

4.1 Discussion .. 24

4.2 Experimental Setup ... 27

4.3 Results ... 28

5 Licensing .. 29

5.1 General Description ... 30

5.2 LockerService Project .. 31

5.3 LiveLockerClient Project .. 33

5.3.1 User Interface .. 35

5.3.2 API Usage ... 35

5.4 Customer Manager Project ... 36

5.4.1 UI classes ... 36

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 3

6 Conclusions .. 37

7 References ... 39

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 4

LIST OF FIGURES
Figure 1: Preliminary design .. 10

Figure 2: First working version .. 10

Figure 3: Initial carrier plan ... 11

Figure 4: Implemented carrier plan ... 11

Figure 5: Semi-final carrier .. 12

Figure 6: MOBILO Carrier (Prototype) architecture .. 13

Figure 7: MOBILO Carrier Prototype design .. 14

Figure 8: All the components of the system arranged in the carrier 15

Figure 9: MOBILO carrier mounted on top of a vehicle .. 15

Figure 10: Low-cost system on top of a vehicle .. 16

Figure 11: GitFlow example diagram ... 23

Figure 12: Geodetic vs photogrammetric reference systems ... 25

Figure 13: Synchronization test among the cameras, with the GPIO cable 27

Figure 14: Control points in the test field.. 27

Figure 15: Test field with MOBILO trajectories ... 28

Figure 16: LiveLocker system architecture .. 30

Figure 17: Sample Code ... 34

Figure 18: Locking algorithm with offline check.. 34

Figure 19: FrmLocker UI .. 35

Figure 20: Customer Manager Main Form .. 36

Figure 21: Customer info dialog .. 37

Figure 22: DB connection .. 37

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 5

LIST OF TABLES
Table 1: Parts included in MOBILO system ... 13

Table 2: Accuracy of the stereo rig. ... 25

Table 3: Positioning subsystem error transmission .. 26

Table 4: Positioning subsystem error transmission with heading calibration 26

Table 5: Interior and relative orientation results. ... 28

Table 6: Accuracy of solutions ... 29

Table 7: Repeatability of solutions .. 29

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 6

LIST OF ABBREVIATIONS

API Application Programming Interface

GPS/GNSS
Global Positioning System / Global Navigation Satellite

System

INS/IMU inertial navigation system / inertial measurement unit

DDRM Distributed Digital Rights Management

VCS Version Control Software

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 7

REVISION CHART AND HISTORY LOG
REV DATE REASON

0.1 01/03/2021 Initial

0.2 15/03/2021 Draft

0.3 31/03/2021 Final

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 8

Executive Summary

This deliverable is part of the results of MOBILO’sproject WP8 and focuses on the System’s

architecture and several other integration issues. MOBILO general architecture consists of a

Mobile Mapping System that includes several components and is able to be mounted on top

of vehicle in order to collect georeferenced video data, as well as three software

components which are used to calibrate the system, collect and process the actual data.

Our final system architecture is based on a rigid Plexiglas box that hosts all parts in its

interior, is attached to the carrying vehicle with magnetic mounts and provides connection

with a single cable to the managing computer. Regarding the system’s performance, in our

experiments we establish that the accuracy of the system is below 0.50 m which

outperforms our initial expectations. There are also two other issues that emerged during

system integration: The employment of VCS enables the continuous development of our

system, while the total refactoring of an existing licensing mechanism led to a complete

DDRM (Distributed Digital Rights Management) system for software developers that enable

remote access control to their propriety applications. As emerges by the integration, given

that our system provides points with 0.5m uncertainty in absolute coordinates, it appears as

a nice alternative to more expensive MMS for several applications.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 9

1 Introduction
MOBILO general architecture consists of a Mobile Mapping System that includes several

components and is able to be mounted on top of vehicle in order to collect georeferenced

video data, as well as three software components which are used to calibrate the system,

collect and process the actual data. In this deliverable, we focus on the task of MOBILO

System Integration. We describe the evolution of the MOBILO System Carrier, preliminary

designs and issues appeared, version control software management strategies that helps in

software integration and continuous development and software licensing methods that are

essential for commercial software exploitation.

More specifically, the issues addressed in this deliverable are as follows:

 Mobilo Prototype: During project’s evolution we have developed several versions of

the system’s carrier, experimented with materials, parts, and designs. The final

design is based on a rigid Plexiglas box hosts all parts in its interior, is attached to the

carrying vehicle with magnetic mounts and provides connection with a single cable

to the managing computer. Box closes with a lit that enables easy access to the

system’s parts.

 Source Control Management: During the task of project integration several revisions

of the underlying software were required; hence, the need for a version control

software emerges. We have therefore invested on source code management via

version control software (Git) [1], that makes easy to work on large groups of

developers producing quality code throughout the product’s life cycle. Version

Control also enables to have control over the code, track the changes made on each

version and via GitFlow program multiple scheduled releases and provides a strong

framework of roles and responsibilities to each development branch.

 Integration results: The results of the system’s integration are measured in terms of

the accuracy achieved by our system. In order to determine it, we first invest on a

theoretical discussion regarding error origin and propagation, and then we proceed

to experimental data gathering on a test field with premeasured targets. The results

of our experiments establish that the accuracy of the system is less than 0.50 m

providing therefore an extremely attractive low-cost alternative to far expensive

existing Mobile Mapping Systems.

 Licensing: All developed software components are protected and locked with a

licensing system that is based on a service running the cloud. The licensing

mechanism locks the software over specific hardware properties of a workstation,

providing at the same time the ability to transfer the license between workstations.

The license check is performed over the web and on a database that stores client

and software data. The developed system is a complete DDRM (Distributed Digital

Rights Management) system for software developers that wishes to have remote

access control to their propriety applications.

The rest of this document in structured as follows: Section 2 provides info about the Carrier

design and implementation as well as the total system architecture. Section 3 focus on

source code management issues arising when dealing with software projects developed and

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 10

maintained by large teams and the employment of Git Flow [2] in our procedures. Section 4

provides the results of the total implementation in terms of accuracy achieved. Section 5

describes the licensing mechanism integrated into our software component and Section 6

provides conclusions and possible future work.

2 MOBILO Prototype
During project’s evolution we have developed several versions of the system, experimenting

with materials, parts, and designs. We used preliminary designs with easy-to-handle

materials as the one of Figure 1. The first working version on which all parts were connected

to a laptop computer hosting the collection software can be found in Figure 2.

Figure 1: Preliminary design

Figure 2: First working version

These preliminary designs had several drawbacks such as small base length etc. Therefore, In

the next steps we started to produce designs of system carriers as the one of Figure 3 which

is implement in Figure 4. This is a design which was implemented with plexiglass, however it

features rather small base length, while it was proven to be less rigid than it should be. All

carriers implemented were attached on top of the carrying vehicle with appropriate

magnetic mounts.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 11

Figure 3: Initial carrier plan

Figure 4: Implemented carrier plan

Moreover, in our initial system versions we employed lens with somewhat high focal length,

i.e., Fujinon lenses with fixed focal length of 12.5 mm. These lenses provide a rather small

field of view of approx. 45o which limits to a large extent the volume of objects visible in

each stereo pair.

Finally, these designs enabled us to understand the behavior of all parts combined, and the

limitations posed by them. Specifically, we rapidly noticed that the quality of the GPS / GNSS

signal was highly affected by the electromagnetic field that cameras and USB hub create:

when GPS / GNSS antenna are close to the cameras / usb hub, the GPS / GNSS performance

degrades significantly, while moving the antenna to a remote position, e.g. 1.5 m away from

the cameras, the GPS / GNSS receiver starts again to operate normally, e.g., producing fixed

solutions. This observation led us to rearrange the initialization and heading calibration

procedures executed during MOBILO system’s usage, as provided in the respective user

manual.

Summarizing the initial lessons learned from all these preliminary designs are:

 Base width (distance between cameras) should be as high as possible

 Carrier should present high rigidly

 Lenses focal length should be as small as possible

 Carrier should contain predefined (and pre-calibrated) positions that serve the

heading alignment with the antenna on a remote – detached position

 Boards, chips etc should be contained in a protected case.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 12

Figure 5 displays the semi-final carrier which addresses all these issues and was used for

testing purposes. In this design some parts are still exposed to environment conditions (e.g.,

cameras, USB bub), while the need for an external power supplier through the car’s battery

still existed.

Figure 5: Semi-final carrier

2.1 Prototype System Architecture

The final parts included in our system have extensively presented in several deliverables and

are summarized in Table 1.

Part Name

Blackfly S USB3 . BFS-U3-50S5C (2x)

Wide-Angle “FUJINON HF6XA-5M” Machine Vision Lens (2x)

SparkFun GPS-RTK2 Board - ZED-F9P

XSens MTi-7 DK

Tallysman TW-150

Tallysman TW-7872 (L1/L2/L5)

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 13

Part Name

Magnet mounts (2x)

USB HUB with

Powerbank

Several cables (GPIO, SMA, USB)

Table 1: Parts included in MOBILO system

Figure 6: MOBILO Carrier (Prototype) architecture

All parts are connected to each other as described in Figure 6. All parts are placed inside the

MOBILO carrier. The two cameras, GPS/GNSS board and INS / IMU boards are connected via

USB cables to a USB Hub which is powered by an appropriate power-bank 25000 mAh

capable for providing power for at least 8 hours of operation. Cameras with the appropriate

lenses are connected to the time pulse interface of the GPS / GNSS board via GPIO cables.

Finally, GPS / GNSS and INS / IMU boards are connected via SMA cables to a GPS signal

splitter (TW150) which splits the signal acquired from a single L1 / L2 / L5 antenna

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 14

(TW7872). Finally, the hub is connected to a laptop on which MobiloGrabber software

operates which is responsible for data collection in the field.

2.2 Prototype design

For the final MOBILO Carrier we used a box which was especially designed to fit to our

needs. The box was made by plexiglass 7 mm thick providing a highly rigidly mount. The box

is able to open on its top so as to provide access to all parts. This is due to the need for

charging the power bank, opening, and closing power buttons of the USB hub etc. On the lid

of the box (top side), there are three pre calibrated positions on which the GPS antenna can

be placed. Cameras are mounted on the box though four screws for each camera so as to

ensure that they stay in a stable position. At the bottom of the box there are two positions

for fitting the magnet mounts that are used to attach the carrier to a vehicle. The final box

design can be found in Figure 7.

Figure 7: MOBILO Carrier Prototype design

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 15

A. GPS / GNSS ZED-F9P

module.

B. INS Xsens MTi-7.

C. Antenna Splitter.

D. Unified Antenna exit.

E. FLIR Blackfly S Color

5.0 MP Camera 1.

F. FLIR Blackfly S Color

5.0 MP Camera 2.

G. Lens Fujinon HF6XA

H. USB 3.0 Hub

I. Laptop connector.

J. Power Bank

25000mAh.

K. TW7872 L1/L2/L5

Antenna

Figure 8: All the components of the system arranged in the carrier

The implementation of the final MOBILO Carrier is made by an appropriate box is illustrated

in Figure 8, which can be mounted on top of a vehicle with the appropriate magnet mounts

as illustrated in Figure 9.

Figure 9: MOBILO carrier mounted on top of a vehicle

2.3 Limitations

We have extensively tested the system’s performance in various conditions. Regarding

movement speed, we have tested the carrier in speeds up to 60 km/h which is valid speed

for our usage scenario. Furthermore, high temperature conditions seem to not affect the

performance of the system, mainly due to the physical air cooling that is achieved via the

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 16

continuous vehicle movement. Finally, our design is not waterproof, and system’s usage is

not recommended under even low rainy conditions.

2.4 Low-cost System

Regarding the low-cost system, this can be realized by any action cams recording video data

in combination with a standard geodetic GPS / GNSS such as Geomax Zenith 20 mounted in

top of a carrier (Figure 10).

Figure 10: Low-cost system on top of a vehicle

Mobilo Calibration software component [D17] system should be used to calibrate the

respective cameras and stereo-rig, using the standard procedure, i.e., interior and relative

orientation. Linear offsets are calculated by direct measurements on the respective carrier.

Data collection cannot be supported by a system such as MobiloGrabber (which only

supports the advanced system) since the parts that compose it are not known upfront.

Actually, this is a major drawback for the low-cost system since user is enabled to monitor

the status of the GPS / GNSS and the cameras separately. Finally, data collected by the GPS /

GNSS device and the respective cameras should be imported into Mobilo Data Processing

tool and be manually synchronized, for each individual video file that is produced by the

cameras.

3 Source Code Management
During the lifetime of a software product such as MOBILO’s software components, it is

common for different versions of the same source code to coexist and being written in

parallel. Tracking these changes is usually an arduous and complicated task, prone to errors

and cause of delays as code is constantly consolidated, tested and refactored usually

numerous times during the development cycle.

This is especially prominent when the development happens across multiple cooperating

teams or individual developers, all working simultaneously on different or near-identical

version of the same software. Thus, the existence of a structured and systematic way to

monitor the modified code is imperative for the smooth and seamless production.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 17

The above systems in software engineering are collectively known as version control and

they can be as simple as file name conventions corresponding to each version or can expand

to dedicated version control software.

In this project we extensively used Version Control Software [2] in a distributed way based

on the Bitbucket service [3]. While VCS has been employed in early development phases of

our software, it was in this WP that the respective need arose imperatively: we had to work

on different versions, enhance software performance and advance user interface on several

aspects in parallel. Therefore, in the next sections we provide information about this kind of

software, as well as info about its integration in the MOBILO Software development process.

3.1 Version Control Software (VCS)

A version control software monitors changes to all files entered under its supervision

including addition of new files, deletion of existing ones and replacements. VSC allows for

the cooperation of multiple developing teams on the same project which can integrate their

code easier and more efficiently.

The main advantages of a VCS are: the ability to revert to previous versions of a file restoring

accidental errors or deletions, testing new features of a program by branching out from the

main code and provides accountability as all changes are identified by date and the person

responsible for them. Most VSC can be integrated with other software development tools

such as automation tools and integrated development environments.

Popular Version Control Software are Git [1] and Mercurial [4]. There are also several GUIs

interfaces for VCS that visualize and manage repositories. For example, Sourcetree [5] is a

GUI that simplifies the interaction with your Git repositories so the developer can focus on

coding. Visual Studio also implements GUI for Git. In this project we employed Git for

version control, with Sourcetree and Visual Studio ‘s GUIs .

3.1.1 VCS basic functions

At minimum, a VCS is expected to offer:

 Concurrent Development: multiple developers and design teams can work on the

same set of files and source code without worrying about duplication or overwriting

other team member’s work. Fixes, patches and amendments can be easily

developed and applied.

 Backup and Restore: code base files are saved as they are edited, and authors can

revert to previous versions.

 Synchronization: Different authors can synchronize their files and stay up to date.

 Undo: authors current mistakes in a file by discarding changes and go back to the

initial file. This can happen on a short-term time span (e.g., a working day

development) or in a long-term time span (e.g., files modified over a year).

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 18

 Track changes: Chunks of code changes can be marked and labeled by date, author

name and short messages describing the changes. By this a historical record of a

project’s progress can be maintained and reviewed.

 Branching: Project can be cloned multiple times and developed in an isolated

sandbox environment without affecting the original one.

 Merging: Multiple clones of the same project can be combined together, and their

changes mix together.

3.2 Basic version control procedures

The VSC is responsible for tracking changes to anything inside a predefined storage location

folder known as repository or repo which acts as a kind of database for the code’s files. A

repository consists of the source code to be monitored and dedicated VCS files containing

tables and metadata vital for the versioning operations.

A working copy is a developer’s personal copy of the repositories files where his work takes

place. When the developer is satisfied with the changes, then it commits them to the

repository.

The following are a few of the most basic procedures and functions performed during

version control and are automate by the BCS.

 Add: inserts a file in the repository for the first

time. From that moment the VSC starts tracking

the file’s changes.

 Revision: the current version a file is on.

 Head: the latest version of a file.

 Check out: VSC downloads the latest revision of

the file. Check out is usually accompanying by

an Edit procedure if wishing the file to be

editable.

 Check in/Commit: uploads a file in the

repository and if VCS checks any changes it

applies a new Revision.

 Update/Pull: in the case of a remote repository,

updating synchronizes the remote files with

those found locally.

 Revert: discards local changes and reloads the

latest version found in repository.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 19

 Branch: creates a copy of all files and folders in the repository and starts tracking

changes independently from other branches.

 Merge: Incorporate changes from

independently development branches into a

single branch.

 Delta/Diffs: finds the differences between

two different revisions of the same file.

 Patch: apply changes from one file to another. This can be executed between

branches of files.

 Conflict: records pending changes to a file from multiple versions that contradict

each other and as a result neither can apply.

 Resolve: fixes the changes found by the Conflict operation and Checks In the correct

version.

 Lock: prevents a file from being modified by anyone apart from the person who

locked it. Used to avoid conflicts.

3.2.1 Example based on a typical scenario.

Developer X Adds a new file (project.txt) to the remote repository /Project/source/code.

Afterwards she Checks it Out, makes modifies it by adding a few lines of code and then

Checks it in the repository. The following day, developer Y Updates his local copy of

project.txt and sees it with the lines of code added by developer X. He can browse the Delta

of the file and finds out that developer X added these lines the previous day.

3.3 Types of Version Control

Version control software can be categorized into two main groups based on how they

handle and distribute the central code repository.

3.3.1 Centralized Version Control System (CVCS)

This type of systems maintains a central repository from which each project contributor can

update his working copy of code and update it when there are changes to record. Other

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 20

contributors can see the changes and the VCS will automatically update the contents of files

that were changed.

So, in a Centralized system

1. the developer commits his/hers changes to the central repository,

2. team members update their working copies with the changes recorded by

the CVCS.

Benefits:

 Centralized systems are typically easier to understand and use.

 You can grant access level control on directory level.

 performs better with binary files.

A few known CVCS are Subversion and Perforce.

3.3.2 Distributed Version Control Systems (DVCS)

In a distributed version control, every developer clones a copy of a repository and has the

full history of the project on the local machine. This copy has all of the metadata of the

original. The act of getting new changes from a repository is usually called Pulling and the

act of transferring changes to a repository is called Pushing. A distributed version control

system can also operate using a central repository which is an authoritative one.

So, in a Distributed system:

1. The developer commits his changes to his/hers local repository. Notice that at this

moment no other team member has knowledge of the changes.

2. The developer pushes the changes to the remote repository,

3. Team members pull changes from the central repository on their local ones.

4. Team members update their working copies by updating from their local

repositories.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 21

Benefits:

 Performance of distributed systems is better.

 Branching and merging is much easier.

 With a distributed system, you don’t need to be connected to the network all the

time as a complete code repository is stored locally.

A few popular DVCS are Git and Mercurial; Among them Git is the most popular that was

employed in MOBILO software development.

3.4 Git Branching Models

Since the creation of Git, users have conceived and used numerous workflows models and

patterns in their Git version control aiming to achieve the best possible results in the

seamless integration between software evolution, testing and building of their applications

while keeping the complexity and the recording of these changes to a minimum. Some of

these workflows focus mainly on handling the repository and its structure while a few others

encapsulate all the workflow withing the branches and the way they merge to achieve their

goals. The latter are known as Git Branch Workflow models.

Some of the most popular workflows are:

 Basic workflow: one central repository which all contributors copy locally and then they

commit back all their changes for others to use.

 Feature Branch workflow: for its functionality added to the project a new branch is

created and all changes are included within it. When feature is completed and tested the

branch merges back to the master branch.

 Merge Requests within the Feature Branch workflow: An expansion of the previous one

which considers the differences withing the members of the development team,

regarding experience, level of contribution and access rights. All changes are first

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 22

reviewed from a senior member and after his approval the changes are applies to the

branches through merged requests.

 Forking workflow: In a forking workflow at any time a developer wants to make changes

to the project, they do not copy the project directly but instead they fork it, make

changes and then ask for a pull request from the owner of the repository to accept and

merge. It is mainly applied to open-source projects where while there is a single owner

of the central repository, the ability to change and modify the project is freely given to

everyone.

 GitFlow workflow [2]: mainly applies to large and complex projects which require more

control over their development, testing, building and release cycle. The development

takes place withing two main branches, the master branch which is always able for

release and the development branch on which all features merges.

GitFlow workflow will be further analyzed as it was the chosen branching model applied to

the development cycle of the MOBILO project.

3.5 GitFlow Workflow Description

GitFlow workflow branching model concepts and architecture was conceived in [2] and is

best suited for project with multiple scheduled releases and provides a strong framework of

roles and responsibilities to each development branch.

3.5.1 GitFlow Branches

The branches used in the GitFlow production environment are illustrated in Figure 11 and

explained as follows:

 Master Branch: Master branch holds the official release history of the project and it

should always be in a release state with the most current build version of the

project. It is common practice all commits mend for Master to be tagged by the

corresponding version number.

 Develop Branch: The Develop branch holds the full development and unabridged

history of the project and is the origin of all Feature branches.

 Feature Branches: Each new feature added to the project resides within its own

branch. Feature branches branch from Develop branch and they merge back to it

after they have been successfully tested and build. Multiple Feature Branches can

exist at the same time, one for each new feature of the project.

 Release Branch: When enough features have been accumulated and a new release

is about to be published, a fork is made from the develop branch known as the

Release branch. After its creation, only minor changes, bug fixes and documentation

amendments can be committed in it. When the new release version is published, the

Release branch is merged into both the Master and Develop branches. Release

branches makes it possible having development teams working on publishing a

current release while other teams developing new features. Also, releases are better

defined in the structure of the version control.

 Hotfixes Branches: Hotfix branches are branches that are based on master and are

the only ones allowed to fork from it. They provide a middle way between Develop

and Release branches and their purpose is for applying bug fixes and patches

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 23

without interrupting the general workflow or losing time waiting for the next

release. They can be considered maintenance branches that work only with Master

branch.

Figure 11: GitFlow example diagram

4 Integration Results – system’s accuracy
The results of the integration of our system are measured in terms of the accuracy of the

provided solutions This can be determined either theoretically by the errors provided by the

several system’s parts and how they propagate in the final result, or experimentally, on a

test field, with premeasured targets. The results of our experiments establish that the

accuracy of the system. Specifically, there are the following aspects that need to be

evaluated:

 the accuracy of the measured points,

 the precision of the measured points

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 24

The accuracy and the precision of the measured points are mainly depended on the

performance of the positioning subsystem as well as the boresight misalignment calculation.

As such, the float of fixed solution of the GNSS system is affecting the results, hence the

precision and accuracy in urban canyons is reduced. In the following sections we first discuss

about the theoretical limits of the system’s accuracy and then proceed with the

experimental setup and the evaluation of the system itself in terms of the accuracy

achieved.

4.1 Discussion

To address the theoretic accuracy that can be achieved by our system we need to focus on

the errors involved from each system’s component and how this is propagated to the final

result. Regarding the imaging subsystem, the two cameras are rigidly attached to a thick

plexiglass, forming a stable stereo rig. There are two critical issues on this setup: the

distance among the cameras and the synchronization of them. The distance among cameras

(base) needs to be big enough to ensure accuracy along the camera axis, which is the axis

with most uncertainty in photogrammetry. It also needs to be small enough to ensure big

overlap among frames, since the stereopair is the measuring area. Objects outside the

stereopair, need to be matched along different frames, which is not an optimal solution,

given the uncertainty (inaccuracies) from the direct geo positioning sub system. As such the

base of the system was set up 0.7m, as a good compromise among both criteria.

Given the pixel size being the measuring accuracy σx=σy=3.45μm, c=0.06m (Table 1), B=0.7m,

by using Equations 1, 2, 3, we may derive the optimistic Table 2. Nevertheless, Table 2

provides a measure of the expected accuracy, in relation to the camera-object distance.

�� � H� �� Eq.(1)

�� � √22 H
 ��

Eq.(2)

� � ��

� ���

Eq (3)

Regarding the imaging subsystem, the theoretic accuracy given the system’s components is

given [6] as a combination of pixel size, focal length, distance between cameras the accuracy

of measurement inside each image. In our system we have the following values

 Pixel size 3.45 μm

 Focal length 6 mm

 Measurement accuracy: 1 pixel (theoretical)

 Distance between cameras in the stereo pair 0.68 m

The results are summarized in Table 2, where becomes clear that the accuracy of the

imaging subsystem in distances greater than 20 m becomes less than 23 cm in the geodetic

reference system. Moreover, in the case where measurement accuracy becomes 2 pixels,

the respective values of Table 2 are doubled, for example when matching algorithm [7] fails

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 25

to automatically recognize the point of interest. Following the realization that objects

beyond 25m would already have significant photogrammetric error, just from camera

capturing system, the stereo frames must be captured at distances of 20m or less, to ensure

that all potential objects of interest should be at a distance <25m from cameras, in at least

one stereo frame.

Camera XYZ

Geodetic XYZ

Distance

[m]

σΧc

[m]

σΥc

[m]

σΖc

[m]

σΧY

[m]

σZ

[m]

5 0.003 0.002 0.015 0.015 0.002

10 0.006 0.004 0.060 0.060 0.004

15 0.009 0.006 0.135 0.135 0.006

20 0.012 0.008 0.239 0.239 0.008

25 0.014 0.010 0.374 0.374 0.010

Table 2: Accuracy of the stereo rig.

On the other hand, the accuracy of the positioning subsystem is dominated by the accuracy

of the GPS / GNSS provided positions and the rotations provided by the INS / IMU. According

to the boards specifications and our experiments these are

 RMS Roll/pitch 0.5°

 RMS Yaw 1.5°

 RMS X/Y (fix) 3cm

 RMS Z (fix) 5cm

Applying these on a typical 3d transformation according to the Figure 12 we obtain the

values displayed in Table 3 regarding the estimated error in the final objects position, only

by the positioning subsystem.

�XYZ� � RΩΦΚ ∗ �x�y�z�
� � �XoYoZo�

Figure 12: Geodetic vs photogrammetric reference systems

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 26

Distance

[m]

σΧins

[m]

σΥins

[m]

σΖins

[m]

σΧYins

[m]

σΖ

[m]

σΧY

[m]

5 0.044 0.131 0.044 0.138 0.066 0.141

10 0.087 0.262 0.087 0.276 0.101 0.278

15 0.131 0.393 0.131 0.414 0.140 0.415

20 0.175 0.524 0.175 0.552 0.182 0.553

25 0.218 0.654 0.218 0.690 0.224 0.691

Table 3: Positioning subsystem error transmission

Obviously, the RMS of 1.5° in the estimation of Yaw heavily affects the horizontal accuracy of

the provided solutions, adding more than half a meter on the error of the objects found at

lead 20 meters away from the MOBILO system. This is the reason for establishing a more

accurate solution presented in WP4 which allows the calculation of heading from

consecutive fixed positions. Substituting thus in the calculation of Yaw an estimated RMS

error of 0.35° (instead of the 1.5° provided), we obtain the values of Table 4 regarding the

estimated error in the final objects position, only by the positioning subsystem.

Distance

[m]

σΧins

[m]

σΥins

[m]

σΖins

[m]

σΧYins

[m]

σΖ

[m]

σΧY

[m]

5 0.044 0.031 0.044 0.053 0.066 0.061

10 0.087 0.061 0.087 0.107 0.101 0.111

15 0.131 0.092 0.131 0.160 0.140 0.163

20 0.175 0.122 0.175 0.213 0.182 0.215

25 0.218 0.153 0.218 0.266 0.224 0.268

Table 4: Positioning subsystem error transmission with heading calibration

As such, the estimated accuracy is obtained by combining the errors provided in Table 2 and

Table 4, resulting in an estimated value of σΧΥ = ± 0.46m and σZ = ± 0.23m in objects found

in a distance of 25 m meters from the cameras, given that GPS provided positions are fixed.

Finally, regarding the synchronization error of the advanced system, to ensure that cameras

were properly synchronized a simplistic test took place. The two cameras were setup looking

an on screen timer while capturing synchronized frames (Figure 3). As they both record the

same time with up to 1/100 sec division, it is safe to assume that the synchronization is at

least that good. Therefore, at speed of 50km/h, this time is interpreted in 0.14m distance

and at speed of 80km/h, 0.22m. Such differentiations from the calibrated relative

orientation of the cameras would have provided suboptimal final results. According to

system verification, where RMS on the absolute position of the points is much better, the

synchronization of the cameras must be much better, at the rank of 1/1000 of the sec or

better, where the relative calibration would be affected by 0.014m at 50km/h, mean speed

during capture of the evaluation data.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 27

Figure 13: Synchronization test among the cameras, with the GPIO cable

Regarding the low-cost system, where video synchronization is performed manual, and

system’s calibration is not known in advance, it is expected to incur higher errors due to the

temporal analysis of the video. For example, given a vehicle’s speed of 60 km/h, and a video

of 30 FPS, the distance between consecutive video frames would be approximately 55 cm.

As such even with a very good synchronization down to the half of the frame rate, would

introduce an additional error of 27 cm. Moreover, given that usually action cams incur high

value of radial distortion, the values of Table 2 should be significantly promoted,

downgrading the overall system’s accuracy.

4.2 Experimental Setup

To test the validity of the system, one georeferenced check field with physical targets has

been measured using RTK GPS/GNSS inside a suburban area, and a total of 41 check points

(Figure 14).

Figure 14: Control points in the test field

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 28

Camera interiors and stereo rig relative orientation were determined used the developed

software (Mobilo Calibration) and the techniques of [8]. The results of the calibration

process are summarized in the following Table 5. The respective calibration results

demonstrate that accuracy is typical of the corresponding photogrammetric processes (i.e.,

0.5 pixels for interior and 1 pixel for relative). Therefore, we can assume that both

equipment and methodologies followed are proper and results within expected limits.

 Left Camera

Interior

Right Camera

Interior

Relative*

number of Images 95 103 47

number of observations 8360 9060 4136

Residuals (pixel) 0.504 0.524 0.94

*pair of images

Table 5: Interior and relative orientation results.

Having completed the system calibration, MOBILO system was initialized on top of the car

and then performed at least two passes in each one of the control fields following the same

and opposite directions (Figure 15).

Figure 15: Test field with MOBILO trajectories

4.3 Results

The collected data were processed by a user and the predefined points where recognized

and digitized on the software, to compare their computed coordinates with the ones of the

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 29

check field. All digitized points were at an effective distance from the cameras of no more

than 20 m; this is a reasonable assumption since consecutive pairs of frames are not

expected to be separated more than 22 m, even at working speed of 80 kph and a frame

rate of 1 sec. The results of the comparison between check points and calculated

coordinates are summarized in the following Table 6.

 # points # observations XY (m) Z (m)

St Dev 41 78 0.50 0.45

St Dev (only fixed) 40 40 0.38 0.43

Table 6: Accuracy of solutions

Clearly the average positional error is less than 0.50 m horizontally and vertically in all

conditions, that is, in all 41 measured points observed by 78 individual positions (video

frames). Furthermore, if we isolate the frames where we have fixed solutions, the error in XY

reduces to 0.38 and in Z to 0.43. Moreover, the horizontal error is mainly concentrated along

the vehicle movement axis (parallel to camera axis), with the maximum error along the

stereo rig’s X axis not exceeding 0.25 m at the worst case. This is an expected result given

the fact that photogrammetry suffers of errors in depth calculation, and the relatively small

baseline does not support better results.

 # points # observations XY (m) Z (m)

Mean of St Dev 30 67 0.41 0.44

Mean of St Dev (only fixed) 10 23 0.15 0.25

Table 7: Repeatability of solutions

The second evaluation concerns the repeatability of the solutions. According to Table 7 the

repeatability was evaluated over 30 total points with 67 observations. Initially we calculated

the standard deviation of all observations for each individual point. Then, values displayed in

Table 7 are the average of all standard deviations for all points.

From all above presented results becomes clear that the system’s accuracy conforms to the

theoretical expectations regarding the error in the calculation of the on-image recognized

and digitized objects’ positions.

5 Licensing
All developed software components in the project are protected and locked with a licensing

system that is based on a service running the cloud. The licensing mechanism locks the

software over specific hardware properties of a workstation, providing at the same time the

ability to transfer the license between workstations. The license check is performed over the

web and on a database that stores client and software data. While this mechanism was

already present at project’s startup, we proceeded to its complete refactoring in order to

improve several aspects of its security and also provide an easy way to manage licenses. We

have therefore developed the LiveLocker system which is described in following paragraphs.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 30

LiveLocker system constitutes a complete DDRM (Distributed Digital Rights Management)

system for software developers that wishes to have remote access control to their propriety

applications. LiveLocker system main functions are:

 Database functionality for recording applications versioning and customers’

information.

 Graphical UI for managing system’s database.

 Issuing and distributing licenses to application users.

 License validation and authorization per machine installation.

 Trial application mode.

 Application offline license mode.

The architecture of LiveLocker System is illustrated in Figure 16, and is composed of the

following components:

 Amazon hosted virtual machine running Windows Server OS.

 IIS Web Server for hosting the system’s server-side functionality.

 Sql Server for database.

 Customer Manager GUI, a windows form application for managing the database.

 LiveLocker windows library which is the front end of the LiveLocker License System.

 The propriety application that is being monitored by the LiveLocker library.

Figure 16: LiveLocker system architecture

5.1 General Description

Applications that need to be locked consume LiveLocker client library which performs the

following actions in order to establish authentication and authorization for the supervised

application:

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 31

1. LiveLocker client instance collects all the necessary customer information and

unique hardware characteristics that are necessary for application and license

identification.

2. Data are sent to the LockerService web service.

3. Web service connects to database and validates credentials and machine.

4. Web service responds to LiveLocker client the supervised application’s license

status.

5. If license is valid, LiveLocker client authorized its use, otherwise a trial mode may

be offered to client.

6. In case of internet or server connection failure, and only if a valid license has

already been activated in the current machine, LiveLocker client offers an offline

mode for a limited number of days.

In the backend an administrator user is responsible for the following tasks, through the

Customer Manager GUI:

1. Creates and inserts into database a new license.

2. Links new license to customer through customer’s vat.

3. Links new license to supervised application through application’s database id.

4. Assigns to license a registration date and a possible expiration date.

5. Sends the license serial number to customer.

LiveLocker API software has been built using the .NET platform and is written in C#

programming language (in various version). Its development has been organized in a single

solution container (LiveLocker solution) which hosts three software related projects. Visual

Studio 2019 was the preferred development IDE. LiveLocker solution constitutes of the

following projects:

 LockerService project: a WCF SOAP service that handles LiveLockerClient request

and communication with the database (Section 5.2).

 LiveLockerClient project: a .net framework library that provides license validation

and authorization functionality withing the monitored application (Section 5.3).

 Customer Manager project: a back end .net framework windows form application

that manages the database of the service (Section 5.4).

Apart from the in-house libraries the following libraries where used:

 Entity Framework Core v6 as the default object-database mapper.

 MailKit for establishing communication with the smtp server.

5.2 LockerService Project

The LockerService includes all the back-end services of the LiveLocker API. It is a Windows

Communication Foundation (WCF) project hosted in IIS server and utilizes SOAP over HTTPS

transport protocol as well as message level encryption. LockerService uses ASP.Net

framework 4 as its development platform. The following classes – data contracts are used:

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 32

 ClientInfo DataContract: ClientInfo class type acts as container for customer

information and smpt configuration data transfer from LiveLockerClient front end

library to the LiveLocker service back end.

Property Type Description

AppNameId Int The monitored application name id

AppVerId Int The monitored application version id

CpuId String The cpu id of the hardware which executes the monitored

application

MacAddress String The macaddress of the hardware which executes the

monitored application

VatId String License owner VAT

Sn String License serial number

Email String License owner email

RequestTrialEmail String Email provided for trial confirmation code

TrialConfirmationCode String Trial confirmation code send to RequestTrialEmail

TrialPeriod Int Trial period in days

DeactivationDaysThreshold Int Minimum time period after which remote license parking is

allowed. Period in days.

SmtpServer String The smtp server for sending the RequestTrialEmail.

SmtpUser String The smtp server user.

SmtpPwd String The smtp server password.

SmtpPort String The smtp server port.

SmtpSenderName String RequestTrialEmail sender address.

 TrialResponse DataContract: TrialResponse class type returns the data produced by

the LiveLockerClient trial request.

Property Type Description

TrialStatus Enum The trial status of the license:

 NoTrial: license has no ongoing trial

 TrialOngoing: a trial license is active

 TrialUnconfirmed: a trial license exists but is yet unconfirmed

 TrialExpired: trial license period has expired

 LicenseExists: a valid regular license exists

DaysLeft Int Days left for trial license to expire

TrialRequestEmail String The email to which the confirmation email has been sent

All service operations are declared in the IService interface and implemented in Service

class. All operations use a single ClientInfo type object for parameter. Operations are

summarized in the following table.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 33

Operation Return type Description

GetLicenseStatus LockStatus Determines the license status of the current

customer-machine combination.

RegisterPermanent LockStatus Attempts to register a valid license.

ParkCurrentMachine LockStatus Deactivates license from the current

machine.

ParkNonCurrentMachine LockStatus Deactivates license from non-current

machine.

GetTrialLicenseStatus TrialResponse Gets the status of a trial license if it exists of

the current customer – machine

combination.

SendConfirmationEmail TrialResponse Sends the confirmation code after a trial

license request.

ConfirmTrialCode TrialResponse Confirms trial license code send application.

Test String Test operation for ensuring LiveLockerClient

can communicate with LiveLockerService.

5.3 LiveLockerClient Project

LiveLockerClient library is hosted in the licensed application and authorizes its use by the

customer. It connects to the database through the LiveLockerService endpoints and

validates the customers license credentials. Setup of locker is done through the monitored

application code. LiveLockerClient uses the .Net Framework 4 as its development platform.

The application that consumes the LiveLocker library, e.g., Mobilo Data Processing

application, is responsible for importing the following information:

 Customer’s vat number,

 Customer’s license serial number,

 Supervised Application database name Id and version id.

 SMTP email server credentials

 Trial period in days if customer wishes to activate the supervised application in trial

mode.

 Time period in days prior before which an activated machine is eligible for remote

deactivation

The following code in Figure 17 demonstrates how a LiveLocker instance can be constructed

and used for controlling access to the supervised application.

LiveLocker supports also offline licensing based on the following algorithm presented in

Figure 18. The algorithm initially checks whether an internet connection exists and if so it

follows the regular licensing procedure where the server is asked for license status and saves

some offline data to the disk so as to be possibly used in the future. These data are used in

the case an internet connection is not present; in this case LiveLocker checks whether offline

data are present, and whether the time period that has passed offline is valid.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 34

using LiveLockerClient.AppCode;

using LiveLockerClient.AppCode.Components;

static void Main(string[] args){

 ApplicationInfo app = new ApplicationInfo(appId: 4, appVer: 2);
 Vat vat = new Vat("123456789");
 SerialNumber sn = new SerialNumber("TST00001");

 Assembly assembly = Assembly.GetExecutingAssembly();

 SmptpConfiguration smtp = new SmptpConfiguration(
 "smtp.server.com", "smpty_email", "smtp_pwd", port:111, "sender", "sender@email.com");

 TrialConfiguration conf = new TrialConfiguration(smtp, trialPeriod: 15, deactivationDays: 3);

 Locker locker = new Locker(app, vat, sn, conf, assembly, "eula.pdf");
 bool unlock = locker.UnlockApplication();

 SupervisedApplication app = new SupervisedApplication();
 if (unlock)
 app.Execute();

}

Figure 17: Sample Code

Figure 18: Locking algorithm with offline check

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 35

5.3.1 User Interface

LiveLocker includes a single class responsible for providing the graphical interface through

which user can provide his/hers license credential for validation and authorization.

Figure 19: FrmLocker UI

5.3.2 API Usage

The LiveLockerClient dynamic link library contains a single public class Locker which exposes

the LiveLocker API. Locker is responsible enabling the monitored application use and

initiative the procedures for trial or offline mode.

Class Member Member

Type

Type Access Description

LicenseStatus Property LockStatus Public Get Holds the license current

status based on LockStatus

enum.

TrialResponse Property TrialResponse Public Get Holds the LockerService

response after a request

for trial license.

Info Property ClientInfo Public Get,

only

constructor

initialization.

Holds the customer,

application and current

machine information.

EulaFile Property String Public Get,

only

constructor

initialization.

The user license agreement

pdf file that can be viewed

through the FrmLocker

GUI.

Locker Constructor Public Public constructor

UnlockApplication() Method Bool Public Asks customer credentials

and authorizes the usage of

the monitored application.

ShowLicenseInformati

on()

Method Bool Public Activates the FrmLocker

GUI for viewing and

manipulating the license

information.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 36

Livelocker is consumed by our MOBILO projects so as to provide valid licenses.

5.4 Customer Manager Project

Customer Manager is a window forms application which purpose is the back-end

manipulation of the LiveLocker system database. Through its GUI user can insert, edit, or

delete customers, licenses, trial licenses and application details such as version and id. User

of Customer Manager application are only those who have valid credential on the LiveLocker

System Database. Model classes are autogenerated by the EntityFramework ORM through

the Visual Studio IDE interface.

5.4.1 UI classes

GUI is composed by the following three classes – forms.

Class FrmMain (Figure 20): the main interface of the CustomerManager application. It is

composed from two data grid views where the contents of licenses and machines are

displayed. From here, user can perform basic insertion and editing action. Customer’s

information is shown, and filtering is done by customer attribute.

Figure 20: Customer Manager Main Form

Class ClientInfo (Figure 21): class creates a small dialog form when user needs to insert a

new customer in the database. Validates the uniqueness of the VAT and customer name.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 37

Figure 21: Customer info dialog

Class FrmServerDialog (Figure 22): class presents the dialog for database connection string

information and for validating its use.

Figure 22: DB connection

6 Conclusions
MOBILO general architecture consists of a Mobile Mapping System that includes several

components and is able to be mounted on top of vehicle in order to collect georeferenced

video data, as well as three software components which are used to calibrate the system,

collect and process the actual data. In this deliverable, we focus on the task of MOBILO

System Integration. We describe the evolution of the MOBILO System Carrier, preliminary

designs and issues appeared, version control software management strategies that helps in

software integration and software licensing methods that are essential for commercial

software exploitation.

Our final system architecture regarding the advanced system is based on a rigid Plexiglas box

hosts all parts in its interior, is attached to the carrying vehicle with magnetic mounts and

provides connection with a single cable to the managing computer. Moreover, the results of

our experiments establish that the accuracy of the system is below 0.50 m which

outperforms our initial expectations. The low-cost system can be implemented by any

carrier capable of mounting a standard GPS / GNSS along with two action cams; however,

the accuracy of the results will suffer from the high synchronization and stereo-rig

calibration error (at least 2 times higher than the one of the advanced system).

There are also two other issues that emerged during system integration: The employment of

VCS enables the continuous development of our system, while the complete refactor of an

existing licensing mechanism led to a complete DDRM (Distributed Digital Rights

Management) system for software developers that enable remote access control to their

propriety applications.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 38

We have to note here that the cost of all system components, including wires, rig and

magnetic base mounts, is below 3000€, which is exceptionally low for an MMS.

Nevertheless, the integration of all these under a turnkey solution was not straight forward:

the commercial ready system cost should include labor, system and software development,

maintenance and support, and further development costs.

As emerges by the integration, given that our system will provide points with 0.5m

uncertainty in absolute coordinates, it emerges as a nice alternative to more expensive MMS

for several applications. It is aiming infrastructure recording and monitoring, as well as

economical solution for recording road condition, or even simple recording of image

sequences with high quality positioning so that revisiting or even direct measurements are

possible. Examples of use:

 Traffic sign recording for GIS input

 Road surface condition recording and estimation of area to be replaced.

 Façade measurements and estate condition

 Electricity, telecommunication and light poles recording, along with equipment type

 Section recording of old provincial roads, for maintenance or redesign (paved

shoulders’ width)

 Extensive photo recording of municipality roads, with georeferencing for easy

documentation/archiving of areas/points of interest.

ENTERPISES – 0916/0055 / WP8 / Report on prototype’s architecture (Deliverable [D20]) Page | 39

7 References

[1] "Git - fast version control," [Online]. Available: https://git-scm.com/. [Accessed 31 03

2021].

[2] V. Driessen, "A successful Git branching model," 05 01 2010. [Online]. Available:

https://nvie.com/posts/a-successful-git-branching-model/. [Accessed 31 03 2020].

[3] "Altassian Bitbucket," Altassian, [Online]. Available: https://bitbucket.org/product/.

[Accessed 31 03 2021].

[4] "Mercurial," [Online]. Available: https://www.mercurial-scm.org/. [Accessed 31 03 2021].

[5] "Sourcetree," Altassian, [Online]. Available: https://www.sourcetreeapp.com/. [Accessed

31 03 2021].

[6] T. Schenk, Introduction to Photogrammetry, 2070 Neil Ave., Columbus, OH 43210:

Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State

University, 2005.

[7] "OpenCV software library," [Online]. Available: [1] https://opencv.org/. [Accessed 31 3

2019].

[8] Z. Zhang, "A Flexible New Technique for Camera Calibration," Technical Report MSR-TR-

98-71, Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA

98052, 2008.

